17.已知函數(shù)f(x)=ex
(Ⅰ)求曲線f(x)過O(0,0)的切線l方程;
(Ⅱ)求曲線f(x)與直線x=0,x=1及x軸所圍圖形的面積.

分析 (Ⅰ)設切線l與曲線f(x)相切于P(t,et),運用導數(shù)的幾何意義,可得切線的斜率,由兩點的斜率公式,解方程可得t,即可得到斜率和切線方程;
(Ⅱ)由題意可得,所求圖形面積為${∫}_{0}^{1}$exdx,求得被積函數(shù),運用定積分公式,計算即可得到所求值.

解答 解:(Ⅰ)設切線l與曲線f(x)相切于P(t,et),
由f(x)的導數(shù)f′(x)=ex,
切線斜率k=et=$\frac{{e}^{t}}{t}$,解得t=1,切線的斜率k為e,
故切線l的方程為y=ex;
(Ⅱ)由題意可得,所求圖形面積為${∫}_{0}^{1}$exdx=ex|${\;}_{0}^{1}$=e1-e0=e-1.

點評 本題考查導數(shù)的運用:求切線的方程,注意設出切點,考查不規(guī)則圖形的面積的求法,注意運用定積分計算,考查化簡整理的運算能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

7.已知g(x)=mx,G(x)=lnx.
(Ⅰ)若G(x)+x+2≤g(x)恒成立,求m的取值范圍;
(Ⅱ)令b=G(a)+a+2,求證:b-2a≤1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.如果${(2x+\sqrt{3})^{21}}={a_0}+{a_1}x+{a_2}{x^2}+…+{a_{21}}{x^{21}}$,那么${({a_1}+{a_3}+{a_5}+…+{a_{21}})^2}-$${({a_0}+{a_2}+{a_4}+…+{a_0})^2}$=( 。
A.1B.-1C.2D.-2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.已知數(shù)列{an}的各項都為正數(shù),且對任意n∈N*,都有$a_{n+1}^2={a_n}{a_{n+2}}+k$(k為常數(shù)).
(1)若k=0,且a1=1,-8a2,a4,a6成等差數(shù)列,求數(shù)列{an}的前n項和Sn;
(2)若$k={({a_2}-{a_1})^2}$,求證:a1,a2,a3成等差數(shù)列;
(3)已知a1=a,a2=b(a,b為常數(shù)),是否存在常數(shù)λ,使得an+an+2=λan+1對任意n∈N*都成立?若存在.求出λ;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.已知函數(shù)f(x)=$\left\{\begin{array}{l}{a•{2}^{x},x≤0}\\{lo{g}_{2}x,x>0}\end{array}\right.$,若關于x的方程f(f(x))=0有且只有一個實數(shù)解,則實數(shù)a的取值范圍是( 。
A.(-∞,0)B.(-∞,0]∪(0,1)C.(-∞,0)∪(0,1]D.(-∞,0)∪(0,1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.在正方體ABCD-A1B1C1D1中,已知$\overrightarrow{{A}_{1}A}$=$\overrightarrow{a}$,$\overrightarrow{{A}_{1}{B}_{1}}$=$\overrightarrow$,$\overrightarrow{{A}_{1}{D}_{1}}$=$\overrightarrow{c}$,O為底面ABCD中心,G為△D1C1O重心,則$\overrightarrow{AG}$=( 。ㄓ$\overrightarrow a,\overrightarrow b,\overrightarrow c$表示)
A.$\frac{5}{6}\overrightarrow c-\frac{1}{2}\overrightarrow b-\frac{2}{3}\overrightarrow a$B.$\frac{5}{6}\overrightarrow c+\frac{1}{2}\overrightarrow b+\frac{2}{3}\overrightarrow a$C.$\frac{5}{6}\overrightarrow c+\frac{1}{2}\overrightarrow b-\frac{2}{3}\overrightarrow a$D.$\frac{5}{6}\overrightarrow c-\frac{1}{2}\overrightarrow b+\frac{2}{3}\overrightarrow a$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.函數(shù)f(x)=2ex的圖象在點(0,f(0))處的切線方程為2x-y+2=0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.曲線y=x3+x在x=1處的切線與x軸,直線x=2所圍成的三角形的面積為$\frac{9}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.下列命題中正確的是( 。
A.“x<-1”是“x2-x-2>0”的必要不充分條件
B.“P且Q”為假,則P假且 Q假
C.命題“ax2-2ax+3>0恒成立”是真命題,則實數(shù)a的取值范圍是0≤a<3
D.命題“若x2-3x+2=0,則x=2”的否命題為“若x2-3x+2=0,則x≠2”

查看答案和解析>>

同步練習冊答案