4.已知函數(shù)f(x)滿足:①對任意正實數(shù)x,恒有f(2x)=2f(x)成立;②當x∈(1,2)時,f(x)=2-x.若f(a)=f(2020),則滿足條件的最小正實數(shù)a的值為( 。
A.28B.34C.36D.100

分析 取x∈(2m,2m+1),則 $\frac{x}{{2}^{m}}$∈(1,2];f( $\frac{x}{{2}^{m}}$)=2-$\frac{x}{{2}^{m}}$,從而f(x)=2m+1-x,根據(jù)f(2020)=f(a)進行化簡,設a∈(2m,2m+1)則f(a)=2m+1-a=28求出a的取值范圍.

解答 解:取x∈(2m,2m+1),則$\frac{x}{{2}^{m}}$∈(1,2];f($\frac{x}{{2}^{m}}$)=2-$\frac{x}{{2}^{m}}$,從而
f(x)=2f($\frac{x}{2}$)=…=2mf($\frac{x}{{2}^{m}}$)=2m+1-x,其中,m=0,1,2,…,
f(2020)=210f($\frac{2020}{1024}$)=211-2020=28=f(a),
設a∈(2m,2m+1)則f(a)=2m+1-a=28,
∴a=2m+1-28∈(2m,2m+1),
即m≥5,a≥36,
∴滿足條件的最小的正實數(shù)a是36.
故選:C.

點評 本題主要考查了抽象函數(shù)及其應用,同時考查了計算能力,分析問題解決問題的能力,轉(zhuǎn)化與劃歸的思想,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

14.將3個不同的小球放入4個不同的盒子中,則不同的放法種數(shù)有( 。
A.12B.14C.64D.81

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.已知函數(shù)f(x)=|2x-1|+|ax-5|(0<a<5).
(1)當a=1時,求不等式f(x)≥9的解集;
(2)如果函數(shù)y=f(x)的最小值為4,求實數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.若|$\overrightarrow{a}$|=5,|$\overrightarrow$|=$\sqrt{3}$,$\overrightarrow{a}$•$\overrightarrow$=-2,則$\overrightarrow{a}$在$\overrightarrow$方向上的投影等于-$\frac{2\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.某小區(qū)現(xiàn)有住房的面積為a平方米,在改造過程中政府決定每年拆除b平方米舊住房,同時按當?shù)曜》棵娣e的10%建設新住房,則n年后該小區(qū)的住房面積為( 。
A.a•1.1n-nbB.a•1.1n-10b(1.1n-1)
C.n(1.1a-1)D.(a-b)1.1n

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.在△ABC中,∠A=60°,b=1,S△ABC=$\sqrt{3}$,則$\frac{a-2b+c}{sinA-2sinB+sinC}$的值等于( 。
A.$\frac{{2\sqrt{39}}}{3}$B.$\frac{26}{3}\sqrt{3}$C.$\frac{8}{3}\sqrt{3}$D.$2\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.在平面直角坐標系xOy中,F(xiàn)1、F2分別是橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的左、右焦點,過F1且與x軸垂直的直線與橢圓交于B,C兩點,且∠BF2C=90°,則該橢圓的離心率是$\sqrt{2}-1$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.已知α是第三象限角且$|{cos\frac{α}{3}}|=-cos\frac{α}{3}$,則$\frac{α}{3}$角是( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.已知圓C經(jīng)過A(3,3),B(2,4)兩點,且圓心C在直線y=3x-5上.
(1)求圓C的標準方程;
(2)設P(-m,0),Q(m,0)(m>0),若圓C上存在點M,使得點M也在以PQ為直徑的圓上,求實數(shù)m的取值范圍.

查看答案和解析>>

同步練習冊答案