分析 由題意,BC1=$\sqrt{4+1}$=$\sqrt{5}$,∠A1BC1=60°,求出底面的邊長,即可求出三棱柱ABC-A1B1C1的側(cè)面積.
解答 解:由題意,BC1=$\sqrt{4+1}$=$\sqrt{5}$,∠A1BC1=60°,∴A1C1=$\frac{\sqrt{15}}{2}$,A1B=$\frac{\sqrt{5}}{2}$,
∴AB=$\frac{1}{2}$,
∴三棱柱ABC-A1B1C1的側(cè)面積為(2+$\frac{1}{2}$+$\frac{\sqrt{15}}{2}$)×1=$\frac{5+\sqrt{15}}{2}$,
故答案為$\frac{5+\sqrt{15}}{2}$.
點評 本題考查三棱柱ABC-A1B1C1的側(cè)面積,考查學(xué)生的計算能力,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:填空題
X | 0 | 1 | 2 | 3 | 4 |
P | 0.2 | 0.1 | 0.1 | 0.3 | 0.3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | an=4×($\frac{3}{2}$)n | B. | an=4×($\frac{3}{2}$)n-1 | C. | an=4×($\frac{2}{3}$)n | D. | an=4×($\frac{2}{3}$)n-1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $-\frac{1}{2}$ | C. | $\frac{{\sqrt{3}}}{2}$ | D. | $-\frac{{\sqrt{3}}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ($\frac{5}{6}$π,0) | B. | ($\frac{7π}{6}$,0) | C. | (-$\frac{π}{3}$,0) | D. | ($\frac{π}{6}$,0) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}$e-1 | B. | e | C. | e2 | D. | $\frac{5}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (2,+∞) | B. | (-4,+∞) | C. | (-2,+∞) | D. | (-4,-2)∪(2,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 99 | B. | 100 | C. | 198 | D. | 200 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com