10.棱長為1的正方體截去一部分之后余下的幾何體,其三視圖如圖所示,則余下幾何體體積的最小值為( 。
A.$\frac{5}{6}$B.$\frac{1}{2}$C.$\frac{2}{3}$D.$\frac{1}{3}$

分析 先根據(jù)題目所給的幾何體的三視圖得出該幾何體的直觀圖,然后計算該幾何體的體積即可.

解答 解:從三視圖可知,截面一定是沿著各面對角線切割正方體的,圖1所示是其中一種情況,即截去一個直角三棱錐,但所求的幾何體的體積是最大的,為1-$\frac{1}{3}$×$\frac{1}{2}$=$\frac{5}{6}$,
而當(dāng)正方體中截去兩個這樣的直角三棱錐如圖2,余下幾何體ABD-B1C1D1時,體積最小,為$\frac{2}{3}$.

故選C.

點(diǎn)評 本題考查立體幾何中的三視圖和空間想象力,考查數(shù)形結(jié)合思想,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.如圖,AB是⊙O的直徑,PA垂直于⊙O所在平面,C是圓周上不同于A,B兩點(diǎn)的任意一點(diǎn),且AB=2,$PA=BC=\sqrt{3}$,則直線PC與底面ABC所成角的大小為( 。
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知$\overrightarrow{a}$=(1,-2),$\overrightarrow$=(-1,3),若m$\overrightarrow{a}$+$\overrightarrow$與$\overrightarrow{a}$-m$\overrightarrow$垂直,求實(shí)數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.直線x+2y=m(m>0)與⊙O:x2+y2=5交于A,B兩點(diǎn),若|${\overrightarrow{OA}$+$\overrightarrow{OB}}$|>2|${\overrightarrow{AB}}$|,則m的取值范圍是(  )
A.$({\sqrt{5},2\sqrt{5}})$B.$({2\sqrt{5},5})$C.$({\sqrt{5},5})$D.$({2,\sqrt{5}})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.一個幾何體的三視圖如圖所示,其中俯視圖是半徑為r的圓,若該幾何體的體積為9π,則它的表面積是( 。
A.27πB.36πC.45πD.54π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.不超過實(shí)數(shù)x的最大整數(shù)稱為x的整數(shù)部分,記作[x].已知f(x)=cos([x]-x),給出下列結(jié)論:
①f(x)是偶函數(shù);
②f(x)是周期函數(shù),且最小值周期為π;
③f(x)的單調(diào)遞減區(qū)間為[k,k+1)(k∈Z);
④f(x)的值域?yàn)閇cos1,1).
其中正確的個數(shù)為(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.一個幾何體的三視圖如圖所示,其中俯視圖為正方形,則最長側(cè)棱(不包括底面的棱)的長度為( 。
A.2B.$\sqrt{6}$C.$2\sqrt{2}$D.$2\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.某幾何體的三視圖如圖所示,則該幾何體的體積為( 。
A.B.$\frac{46}{3}$πC.18πD.$\frac{52}{3}$π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.函數(shù)$f(x)=\sqrt{x+1}+lg(x-3)$的定義域是( 。
A.[-1,3)B.(-∞,-1]C.[3,+∞)D.(3,+∞)

查看答案和解析>>

同步練習(xí)冊答案