4.等差數(shù)列{an}中,a3+a4=12,S7=49.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)記[x]表示不超過x的最大整數(shù),如[0.9]=0,[2.6]=2.令bn=[lgan],求數(shù)列{bn}的前2000項和.

分析 (I)設(shè)等差數(shù)列{an}的公差為d,由a3+a4=12,S7=49.可得2a1+5d=12,$7{a}_{1}+\frac{7×6}{2}$d=49,解出即可得出.
(II)bn=[lgan]=[lg(2n-1)],n=1,2,3,4,5時,bn=0.6≤n≤50時,bn=1;51≤n≤500時,bn=2;501≤n≤2000時,bn=3.即可得出.

解答 解:(I)設(shè)等差數(shù)列{an}的公差為d,∵a3+a4=12,S7=49.
∴2a1+5d=12,$7{a}_{1}+\frac{7×6}{2}$d=49,
解得a1=1,d=2.
∴an=1+2(n-1)=2n-1.
(II)bn=[lgan]=[lg(2n-1)],
n=1,2,3,4,5時,bn=0.
6≤n≤50時,bn=1;
51≤n≤500時,bn=2;
501≤n≤2000時,bn=3.
∴數(shù)列{bn}的前2000項和=45+450×2+1500×3=5445.

點評 本題考查了等差數(shù)列的通項公式、取整函數(shù)的性質(zhì)、數(shù)列求和,考查了推理能力與計算能力,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

14.已知在等比數(shù)列{an}中,a1a3=36,a2+a4=60,Sn>400,則n的取值范圍是n≥8,且n為偶數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.下列函數(shù)中,最小正周期為π且在(0,$\frac{π}{2}$)是減函數(shù)的是( 。
A.y=cos(2x+$\frac{π}{2}$)B.y=|sin(x+$\frac{π}{3}$)|C.y=2cos2x-3D.y=-tan2x

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.已知f(x)是定義在R上的偶函數(shù),其導函數(shù)為f′(x),若f′(x)<f(x),且f(x+1)=f(3-x),f (2011)=3,則不等式f (x)<3ex-1的解集為(  )
A.(e,+∞)B.(1,+∞)C.(-∞,0)D.(-∞,$\frac{1}{e}$)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.袋中有大小,形狀相同的紅球,黑球各一個,現(xiàn)有放回地隨機摸取3次,每次摸出一個球.若摸到紅球得2分,摸到黑球得1分,則3次摸球所得總分為5分的概率是(  )
A.$\frac{1}{3}$B.$\frac{3}{8}$C.$\frac{1}{2}$D.$\frac{5}{8}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.設(shè)${({1-2x})^5}={a_0}+2{a_1}x+4{a_2}{x^2}+8{a_3}{x^3}+16{a_4}{x^4}+32{a_5}{x^5}$,則a1+a2+a3+a4+a5=-1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.已知$sinx-cosx=\frac{1}{5}$,且$x∈({0,\frac{π}{2}})$,則sinxcosx=$\frac{12}{25}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.角α的終邊經(jīng)過點P(b,4),且cosα=-$\frac{3}{5}$,則b的值為( 。
A.±3B.3C.-3D.5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.若$\vec a,\vec b$的夾角為60°,$|{\vec a}|=1$,$|{\vec b}|=2$,則$|{\vec a+\vec b}|$=$\sqrt{7}$.

查看答案和解析>>

同步練習冊答案