已知雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的中心為O,過其右焦點F的直線與兩條漸近線交于A、B兩點,
FA

BF
同向,且FA⊥OA,若|OA|+|OB|=2|AB|,則此雙曲線的離心率為(  )
A、
3
B、
6
2
C、
10
3
D、
5
2
考點:雙曲線的簡單性質(zhì)
專題:計算題,平面向量及應用,圓錐曲線的定義、性質(zhì)與方程
分析:由勾股定理、|
OA
|+|
OB
|=2|
AB
|,得出直角三角形的2個直角邊的長度比,聯(lián)想到漸近線的夾角,求出漸近線的斜率,進而求出離心率.
解答: 解:由FA⊥OA知,|OA|2+|AB|2=|OB|2,
又|
OA
|+|
OB
|=2|
AB
|,
所以|OA|:|AB|:|OB|=3:4:5,
于是tan∠AOB=
4
3

因為
FA
BF
同向,
所以過F作直線l1的垂線與雙曲線相交于同一支.
而雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的漸近線方程y=±
b
a
x,故
2b
a
1-
b2
a2
=
4
3

解得a=2b,
故雙曲線的離心率e=
c
a
=
a2+b2
a
=
5
2

故選:D.
點評:本題考查了雙曲線的簡單性質(zhì),確定tan∠AOB=
4
3
,聯(lián)想到對應的是漸近線的夾角的正切值,是解題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)在R上的導函數(shù)為f′(x),且2f(x)+xf′(x)>x2,則不等式(x2-x)f(x)>0的解集為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某大學準備在開學時舉行一次大學一年級學生座談會,擬邀請20名來自本校機械工程學院、海洋學院、醫(yī)學院、經(jīng)濟學院的學生參加,各學院邀請的學生數(shù)如下表所示:
學院機械工程學院海洋學院醫(yī)學院經(jīng)濟學院
人數(shù)4646
(Ⅰ)從這20名學生中隨機選出3名學生發(fā)言,求這3名學生中任意兩個均不屬于同一學院的概率;
(Ⅱ)從這20名學生中隨機選出3名學生發(fā)言,設來自醫(yī)學院的學生數(shù)為ξ,求隨機變量ξ的概率分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖AC是圓O的直徑,B、D是圓O上兩點,AC=2BC=2CD=2,PA⊥圓O所在的平面,PA=
3
,點M在線段BP上,且BM=
1
3
BP.
(1)求證:CM∥平面PAD;
(2)求異面直線BP與CD所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
4x
2x2+m
在(
1
2
,f(
1
2
))處的切線方程為8x-9y+t=0(m∈N,t∈R)
(1)求m和t的值;
(2)若關于x的不等式f(x)≤ax+
8
9
在[
1
2
,+∞)恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=sin(ωx+ϕ) (ω>0,|ϕ|<
π
2
)有一個零點x0=-
2
3
,且其圖象過點A(
7
3
,1),記函數(shù)f(x)的最小正周期為T,
(1)若f′(x0)<0,試求T的最大值及T取最大值時相應的函數(shù)解析式、
(2)若將所有滿足題條件的ω值按從小到大的順序排列,構成數(shù)列{ωn},試求數(shù)列{ωn}的前項和Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

任取實數(shù)a,b∈[-1,1],則a,b滿足b≥a2的概率為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知
a
=(-1,3),
b
=(1,t),若(
a
-2
b
)⊥
a
,則|
b
|=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,角A,B,C所對的邊分別為a,b,c,三角形的面積為
3
,又
cosC
cosB
=
c
2a-b
,則
1
b+1
+
9
a+9
的最大值為
 

查看答案和解析>>

同步練習冊答案