1.給出下列命題:
①存在實(shí)數(shù)x,使sinx+cosx=$\frac{3}{2}$;
②若α,β是第一象限角,且α>β,則cosα<cosβ;
③函數(shù)y=sin($\frac{2}{3}$x+$\frac{π}{2}$)是偶函數(shù);
④函數(shù)y=sin2x的圖象向左平移$\frac{π}{4}$個(gè)單位,得到函數(shù)y=cos2x的圖象.
其中正確命題的序號(hào)是③④(把正確命題的序號(hào)都填上)

分析 利用三角函數(shù)的有界性以及平移后圖象的變換,即可得出答案.

解答 解:對(duì)命題進(jìn)行一一判斷:
①sinx+cosx=$\sqrt{2}$sin(x+$\frac{π}{4}$)≤$\sqrt{2}$,故不存在x是的sinx+cosx=$\frac{3}{2}$,故①錯(cuò)誤;
②若α,β是第一象限角,且α>β,不妨取α=390°,β=30°,可知cosα=cosβ,故②錯(cuò)誤;
③函數(shù)y=sin($\frac{2}{3}$x+$\frac{π}{2}$)=cos$\frac{2}{3}$x是偶函數(shù);故③正確;
④函數(shù)y=sin2x的圖象向左平移$\frac{π}{4}$個(gè)單位,得到函數(shù)y=sin(2(x+$\frac{π}{4}$))=sin(2x+$\frac{π}{2}$)=cos2x的圖象,故④正確.
故答案為:③④.

點(diǎn)評(píng) 本題考查簡(jiǎn)易邏輯的使用,考查學(xué)生對(duì)基礎(chǔ)知識(shí)的掌握,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)(x∈R)滿足f(x)=$\frac{2bx}{ax-1}$,a≠0,f(1)=1且使f(x)=2x成立的實(shí)數(shù)x只有一個(gè),求函數(shù)f(x)的表達(dá)式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.平行四邊形ABCD中,對(duì)角線AC與BD相交于點(diǎn)O.已知$\overrightarrow{DP}$⊥$\overrightarrow{AC}$,且|$\overrightarrow{DP}$|=2,$\overrightarrow{DM}$=$\frac{1}{3}$$\overrightarrow{DO}$,$\overrightarrow{ON}$=$\frac{1}{3}$$\overrightarrow{OC}$.設(shè)$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{AD}$=$\overrightarrow$.
(Ⅰ)用$\overrightarrow{a}$,$\overrightarrow$表示$\overrightarrow{MN}$;
(Ⅱ)求$\overrightarrow{DP}•\overrightarrow{DB}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.在《爸爸去哪兒》第二季第四期中,村長(zhǎng)給8位“萌娃”布置一項(xiàng)搜尋空投食物的任務(wù).已知:
①食物投擲地點(diǎn)有遠(yuǎn)、近兩處; 
②由于“萌娃”Grace年紀(jì)尚小,所以要么不參與該項(xiàng)任務(wù),但此時(shí)另需一位“萌娃”在大本營陪同,要么參與搜尋近處投擲點(diǎn)的食物;
③所有參與搜尋任務(wù)的“萌娃”須被均分成兩組,一組去遠(yuǎn)處,一組去近處.
則不同的搜尋方案有175種.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.秦九韶算法是中國南宋時(shí)期的數(shù)學(xué)家秦九韶提出的一種多項(xiàng)式簡(jiǎn)化算法,對(duì)于求一個(gè)n次多項(xiàng)式函數(shù)fn(x)=anxn+an-1xn-1+…+a1x+a0的具體函數(shù)值,運(yùn)用常規(guī)方法計(jì)算出結(jié)果最多需要n次加法和$\frac{n(n+1)}{2}$乘法,而運(yùn)用秦九韶算法由內(nèi)而外逐層計(jì)算一次多項(xiàng)式的值的算法至多需要n次加法和n次乘法.對(duì)于計(jì)算機(jī)來說,做一次乘法運(yùn)算所用的時(shí)間比做一次加法運(yùn)算要長(zhǎng)得多,所以此算法極大地縮短了CPU運(yùn)算時(shí)間,因此即使在今天該算法仍具有重要意義.運(yùn)用秦九韶算法計(jì)算f(x)=0.5x6+4x5-x4+3x3-5x當(dāng)x=3時(shí)的值時(shí),最先計(jì)算的是(  )
A.-5×3=-15B.0.5×3+4=5.5
C.3×33-5×3=66D.0.5×36+4×35=1336.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=loga$\frac{2+x}{2-x}$(0<a<1)
(1)試判斷函數(shù)f(x)的奇偶性
(2)解不等式f(x)≥loga3x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=(a-$\frac{1}{2}$)x2+lnx,(a∈R).
(Ⅰ)當(dāng)a=0時(shí),求f(x)在區(qū)間[$\frac{1}{e}$,e]上的最大值;
(Ⅱ)若在區(qū)間(1,+∞)上,函數(shù)f(x)的圖象恒在直線y=2ax下方,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.某幾何體的三視圖如圖所示,若該幾何體的體積為5$\sqrt{11}$,則俯視圖中線段的長(zhǎng)度x的值是( 。
A.6B.4$\sqrt{11}$C.5D.2$\sqrt{13}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.若x,y滿足約束條件$\left\{\begin{array}{l}2x-y+2≥0\\ x-2y+1≤0\\ x+y-2≤0\end{array}\right.$,則z=2x+y-1的最大值為( 。
A.3B.-1C.1D.2

查看答案和解析>>

同步練習(xí)冊(cè)答案