分析 (1)將直線l的參數(shù)方程兩式相減即可消去參數(shù)t得出普通方程,求出曲線C的直角坐標(biāo)方程,再轉(zhuǎn)化為極坐標(biāo)方程;
(2)將直線l的參數(shù)方程代入圓C的直角坐標(biāo)方程得出關(guān)于參數(shù)t方程,根據(jù)方程解的個數(shù)判斷位置關(guān)系,利用根與系數(shù)的關(guān)系和參數(shù)的幾何意義計算|PQ|.
解答 解:(1)∵直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=-1+\frac{\sqrt{2}}{2}t}\\{y=\frac{\sqrt{2}}{2}t}\end{array}\right.$(t為參數(shù)),
∴x-y=-1,即x-y+1=0.∴直線l的普通方程為x-y+1=0;
極坐標(biāo)(1,$\frac{π}{4}$)對應(yīng)的直角坐標(biāo)為($\frac{\sqrt{2}}{2}$,$\frac{\sqrt{2}}{2}$),
∴圓C的標(biāo)準(zhǔn)方程為(x-$\frac{\sqrt{2}}{2}$)2+(y-$\frac{\sqrt{2}}{2}$)2=1,即x2+y2-$\sqrt{2}$x-$\sqrt{2}$y=0.
又x=ρcosθ,y=ρsinθ,
∴ρ2-$\sqrt{2}$ρcosθ-$\sqrt{2}$ρsinθ=0,即ρ=$\sqrt{2}$cosθ+$\sqrt{2}$sinθ.
∴曲線C的極坐標(biāo)方程為ρ=$\sqrt{2}$cosθ+$\sqrt{2}$sinθ.
(2)把直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=-1+\frac{\sqrt{2}}{2}t}\\{y=\frac{\sqrt{2}}{2}t}\end{array}\right.$(t為參數(shù))代入曲線C的直角坐標(biāo)方程x2+y2-$\sqrt{2}$x-$\sqrt{2}$y=0,
得:t2-(2+$\sqrt{2}$)t+$\sqrt{2}$+1=0,
∵△=(2+$\sqrt{2}$)2-4($\sqrt{2}+1$)=2>0,
∴方程t2-(2+$\sqrt{2}$)t+$\sqrt{2}$+1=0有兩解t1,t2,
∴t1+t2=2+$\sqrt{2}$,t1t2=$\sqrt{2}+1$.
∴|t1-t2|=$\sqrt{({t}_{1}+{t}_{2})^{2}-4{t}_{1}{t}_{2}}$=$\sqrt{2}$.
∴直線l與圓C相交,|PQ|=$\sqrt{2}$.
點(diǎn)評 本題考查了極坐標(biāo)方程,參數(shù)方程與普通方程的轉(zhuǎn)化,參數(shù)的幾何意義,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 13項 | B. | 14項 | C. | 15項 | D. | 16項 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{2}$=1 | B. | $\frac{{x}^{2}}{8}$+$\frac{{y}^{2}}{4}$=1 | C. | $\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{4}$=1 | D. | $\frac{{x}^{2}}{32}$+$\frac{{y}^{2}}{16}$=1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-1,3) | B. | (-∞,-1]∪[3,+∞) | C. | [-1,3] | D. | (-∞,-1)∪[3,+∞) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com