12.$\underset{lim}{x→\frac{π}{2}}$$\frac{cos2x}{x}$=( 。
A.$\frac{π}{2}$B.-$\frac{π}{2}$C.$\frac{2}{π}$D.-$\frac{2}{π}$

分析 利用極限的運(yùn)算法則即可得出.

解答 解:原式=$\frac{\underset{lim}{x→\frac{π}{2}}cos2x}{\underset{lim}{x→\frac{π}{2}}x}$=$\frac{cosπ}{\frac{π}{2}}$=-$\frac{2}{π}$,
故選:D.

點(diǎn)評(píng) 本題考查了極限的運(yùn)算法則,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.設(shè)f(x)=|2x-1|+|x+1|.
(1)解不等式f(x)≤3;
(2)若不等式m|x|≤f(x)恒成立,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知函數(shù)f(x)=|2x+1|-|x-4|.
(1)解不等式f(x)≥0;
(2)若存在x0∈[-7,7],使得f(x0)+$\frac{1}{2}$m2<4m成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.如圖所示,正方形ABCD所在的平面與三角形CDE所在的平面交于CD,且AE⊥平面CDE.
(1)求證:平面ABCD⊥平面ADE;
(2)已知AB=2AE=2,求三棱錐C-BDE的高h(yuǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.已知函數(shù)f(x)=3ln2x-2x,它的兩個(gè)極值點(diǎn)為x1,x2(x1<x2),給出以下結(jié)論:
①1<x1<3<x2;②1<x1<x2<3;③f(x1)>-3;④f(x1)<-$\frac{5}{3}$
則上述結(jié)論中所有正確的序號(hào)是(  )
A.①③B.②③④C.①④D.①③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.某幾何體的三視圖如圖所示,則該幾何體的體積為$\frac{5}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知在四棱錐P-ABCD中,底面ABCD為菱形且∠ADC=120°,E,F(xiàn)分別是AD,PB的中點(diǎn)且PD=AD.
(1)求證:EF∥平面PCD;
(2)若∠PDA=60°,求證:EF⊥BC;
(3)若PD⊥平面ABCD,求二面角A-PB-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知A、B、C、D為同一平面上的四個(gè)點(diǎn),且滿足AB=2,BC=CD=DA=1,∠BAD=θ,△ABD的面積為S,△BCD的面積為T.
(1)當(dāng)θ=$\frac{π}{3}$時(shí),求T的值;
(2)當(dāng)S=T時(shí),求cosθ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知函數(shù)f(x)=alnx+$\frac{1}{2}$x2-(1+a)x.
(1)當(dāng)a>1時(shí),求函數(shù)f(x)的極值;
(2)若f(x)≥0對(duì)定義域內(nèi)的任意x恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案