6.函數(shù)y=5$\sqrt{2x-1}$+$\sqrt{10-2x}$的最大值為3$\sqrt{26}$,此時x=$\frac{251}{52}$(利用柯西不等式)

分析 利用柯西不等式得:[52+12][($\sqrt{2x-1}$)2+($\sqrt{10-2x}$)2]≥(5$\sqrt{2x-1}$+1×$\sqrt{10-2x}$)2即可

解答 解:由柯西不等式得:[52+12][($\sqrt{2x-1}$)2+($\sqrt{10-2x}$)2]≥(5$\sqrt{2x-1}$+1×$\sqrt{10-2x}$)2
∴(5$\sqrt{2x-1}$+$\sqrt{10-2x}$)2≤26×9,
∴5$\sqrt{2x-1}$+$\sqrt{10-2x}$≤3$\sqrt{26}$,當(dāng)且僅當(dāng)5$\sqrt{10-2x}$=1×$\sqrt{2x-1}$時,取等號,即x=$\frac{251}{52}$時取等號.
故答案為:3$\sqrt{26}$,$\frac{251}{52}$

點(diǎn)評 本題考查了柯西不等式的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)f(x)=x2+2x+alnx
(Ⅰ)若函數(shù)f(x)在x=1處的切線與直線y-3x=0平行,求a的值;
(Ⅱ)當(dāng)t≥1時,不等式f(2t-1)≥2f(t)-3恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知向量$\vec a$,$\vec b$滿足$|\overrightarrow a|=2,|\overrightarrow b|=4$,且$\vec a•\overrightarrow b=4$,則$\vec a$與$\vec b$的夾角為(  )
A.$\frac{π}{6}$B.$\frac{π}{2}$C.$\frac{π}{4}$D.$\frac{π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.甲乙兩個班級進(jìn)行一門課程的考試,按照學(xué)生考試成績優(yōu)秀和不優(yōu)秀統(tǒng)計成績后,得到如下的列聯(lián)表:
優(yōu) 秀不優(yōu)秀
甲 班1035
乙 班738
根據(jù)列聯(lián)表的獨(dú)立性檢驗,能否在犯錯誤的概率不超過0.01的前提下認(rèn)為成績與班級有關(guān)系?
附:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$
P(K2≥k00.500.400.250.150.100.050.0250.0100.0050.001
k00.4550.7081.3232.0722.7063.8415.0246.6357.87910.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.有不同顏色的四件上衣與不同顏色的三條長褲,如果一條長褲與一件上衣配成一套,則不同的配法種數(shù)(  )
A.7B.64C.12D.81

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.在△ABC中,角A,B,C所對的邊分別為a,b,c,已知cosC=$\frac{\sqrt{6}}{4}$.
(1)求sinC的值;
(2)當(dāng)a=2,2sinA=sinC時,求b,c的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.在三棱錐S-ABC中,∠ABC=90°,AC中點(diǎn)為點(diǎn)O,AC=2,SO⊥平面ABC,SO=$\sqrt{3}$,則三棱錐外接球的表面積為$\frac{16π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知x,y滿足|x|+|y|≤4,則z=(x+3)2+(y-3)2的最小值是2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知全集U=R,集合A={x|-2<x<2},B={x|(1+x)(3-x)≥0},則A∩B等于( 。
A.[-2,2)B.[-1,2)C.(-2,-1)D.(2,3)

查看答案和解析>>

同步練習(xí)冊答案