已知
a
=(1,2),
b
=(1,1),且向量
a
a
+m
b
的夾角為銳角,則m的取值范圍為
 
考點(diǎn):數(shù)量積表示兩個向量的夾角
專題:平面向量及應(yīng)用
分析:根據(jù)向量
a
a
+m
b
的夾角為銳角,列出不等式組
a
•(
a
+m
b
)>0
1×(2+m)-2×(1+m)≠0
,求出解集即可.
解答: 解:∵
a
=(1,2),
b
=(1,1),
a
+m
b
=(1+m,2+m),
又∵向量
a
a
+m
b
的夾角為銳角,
a
•(
a
+m
b
)>0
1×(2+m)-2×(1+m)≠0

(1+m)+2(2+m)>0
m≠0
;
解得m>-
5
3
且m≠0;
∴m的取值范圍是m>-
5
3
且m≠0.
故答案為:m>-
5
3
且m≠0.
點(diǎn)評:本題考查了平面向量的應(yīng)用問題,解題時應(yīng)根據(jù)平面向量的數(shù)量積進(jìn)行分析判斷,以便得出正確的結(jié)論,是基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,四邊形ABCD中,AB⊥AD,AD∥BC,AD=6,BC=4,AB=2,E、F分別在BC、AD上,EF∥AB.現(xiàn)將四邊形ABEF沿EF折起,使得平面ABEF⊥平面EFDC.
(Ⅰ) 當(dāng)BE=1,是否在折疊后的AD上存在一點(diǎn)P,使得CP∥平面ABEF?若存在,求出P點(diǎn)位置,若不存在,說明理由;
(Ⅱ) 設(shè)BE=x,問當(dāng)x為何值時,三棱錐A-CDF的體積有最大值?并求出這個最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

為了得到函數(shù)y=31-x的圖象,可以把函數(shù)y=3-x的圖象(  )
A、向左平移3個單位長度
B、向右平移3個單位長度
C、向左平移1個單位長度
D、向右平移1個單位長度

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=ln
x+1
x-1

(Ⅰ)判斷函數(shù)f(x)在區(qū)間(1,+∞)上的單調(diào)性,并證明;
(Ⅱ)對于區(qū)間[2,4]上的任意一個x,不等式f(x)≥ex+m恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a>0,b>0且a+b=1.
求證:(1)
1
a
+
1
b
≥4
;
(2)
a+
1
2
+
b+
1
2
≤2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,若c=2acosB,則△ABC的形狀為(  )
A、直角三角形
B、等腰三角形
C、等邊三角形
D、銳角三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

2
C
1
99
-4
C
2
99
+8
C
3
99
-16
C
4
99
+…+299
C
99
99
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列函數(shù)中,既是偶函數(shù)又在(-∞,0)上單調(diào)遞增的是( 。
A、y=x3
B、y=cosx
C、y=(
1
2
)|x|
D、y=x2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=(α+cos2x)cos(2x+θ)為奇函數(shù),且f(
π
4
)=0,其中α∈R,θ∈(0,π).
(1)求α,θ的值;
(2)若f(
α
4
)=-
1
5
,α∈(
π
2
,π),求sin(α+
π
3
)的值.

查看答案和解析>>

同步練習(xí)冊答案