9.已知A={x|-1<x≤2},B={x|x≤3,x∈Z},A∩B=( 。
A.{0,1,2,3}B.{1,2}C.{0,1,2}D.{-1,0,1,2}

分析 由已知條件利用不等式性質(zhì)及交集定義能求出A∩B.

解答 解:∵A={x|-1<x≤2},B={x|x≤3,x∈Z},
∴A∩B={-1<x≤2,x∈Z}={0,1,2}.
故選:C.

點評 本題考查交集的求法,是基礎(chǔ)題,解題時要認(rèn)真審題,注意交集定義的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.若函數(shù)y=x2-4px-2的圖象過點A(tanα,1),及B(tanβ,1),求sin2(α+β).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.在△ABC中,角A,B,C的對邊分別是a、b、c,若b2+c2=2a2,則角A的最大值為( 。
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.設(shè)數(shù)列{an}的前n項和為Sn,a1=1,且對任意正整數(shù)n,點(an,an+1)在直線x-y+1=0上.
(1)求數(shù)列{an}的通項公式;
(2)已知數(shù)列{bn},且bn=$\frac{1}{{{a_n}•{a_{n+1}}}}$,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.為了調(diào)查“小學(xué)成績”和“中學(xué)成績”兩個變量之間是否存在相關(guān)關(guān)系,某科研機構(gòu)將所調(diào)查的結(jié)果統(tǒng)計如表所示:
中學(xué)成績不優(yōu)秀中學(xué)成績優(yōu)秀總計
小學(xué)成績優(yōu)秀52025
小學(xué)成績不優(yōu)秀10515
合計152540
則下列說法正確的是( 。
A.在犯錯誤的概率不超過0.1的前提下,認(rèn)為“小學(xué)成績與中學(xué)成績無關(guān)”
B.在犯錯誤的概率不超過0.1的前提下,認(rèn)為“小學(xué)成績與中學(xué)成績有關(guān)”
C.在犯錯誤的概率不超過0.01的前提下,認(rèn)為“小學(xué)成績與中學(xué)成績無關(guān)”
D.在犯錯誤的概率不超過0.01的前提下,認(rèn)為“小學(xué)成績與中學(xué)成績有關(guān)”

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.$\sqrt{1-sin2}$+$\sqrt{1+sin2}$=2sin1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)=$\sqrt{2}$cos(x+$\frac{π}{4}}$),x∈R.
(1)求函數(shù)f(x)的在[-$\frac{π}{2}$,$\frac{π}{2}$]上的值域;
(2)若θ∈(0,$\frac{π}{2}}$),且f(θ)=$\frac{1}{2}$,求sin2θ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知關(guān)于x的不等式$\frac{x-m+1}{x-m-1}$<0的解集為A,集合B={x|3-n<x<4-n},A∩B≠∅的充要條件是2<m+n<5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)f(x)=asin(2ωx+$\frac{π}{6}$)+$\frac{a}{2}$+b(x∈R,a>0,ω>0)的最小正周期為π,函數(shù)f(x)的最大值是$\frac{7}{4}$,最小值是$\frac{3}{4}$.
(1)求ω、a、b的值;  
(2)求f(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

同步練習(xí)冊答案