分析 (1)將點(diǎn)代入直線方程,由等差數(shù)列的定義和通項公式,即可得到所求通項;
(2)求得bn=$\frac{1}{n(n+1)}$=$\frac{1}{n}$-$\frac{1}{n+1}$,由數(shù)列的求和方法:裂項相消求和,化簡整理即可得到所求和.
解答 解:(1)a1=1,且對任意正整數(shù)n,點(diǎn)(an,an+1)在直線x-y+1=0上,
可得an-an+1+1=0,即為an+1-an=1,
即數(shù)列{an}為首項為1,公差為1的等差數(shù)列,
可得an=1+n-1=n;
(2)bn=$\frac{1}{{{a_n}•{a_{n+1}}}}$=$\frac{1}{n(n+1)}$=$\frac{1}{n}$-$\frac{1}{n+1}$,
前n項和Tn=b1+b2+…+bn=1-$\frac{1}{2}$+$\frac{1}{2}$-$\frac{1}{3}$+…+$\frac{1}{n}$-$\frac{1}{n+1}$=1-$\frac{1}{n+1}$=$\frac{n}{n+1}$.
點(diǎn)評 本題考查等差數(shù)列的定義和通項公式的運(yùn)用,考查數(shù)列的求和方法:裂項相消求和,考查運(yùn)算能力化簡能力,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | a<c<b<d | B. | c<d<a<b | C. | b<d<c<a | D. | d<b<a<c |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | $\sqrt{5}$ | C. | $\sqrt{6}$ | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {0,1,2,3} | B. | {1,2} | C. | {0,1,2} | D. | {-1,0,1,2} |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com