解放軍某部在實兵演練對抗比賽中,紅、藍兩個小組均派6人參加實彈射擊,其所得成績的莖葉圖如圖所示.
(1)求出紅軍射擊的中位數(shù);
(2)根據(jù)莖葉圖,計算紅、藍兩個小組射擊成績的方差,并說明哪個小組的成績相對比較穩(wěn)定.
考點:極差、方差與標準差,莖葉圖
專題:概率與統(tǒng)計
分析:將數(shù)據(jù)代入公式分別可得其均值和方差由其意義可得結(jié)論.
解答: 解:(1)中位數(shù)為112;
(2)
.
x
=
1
6
(107+111+111+113+114+122)=113,
.
x
=
1
6
(108+109+110+112+115+124)=113,
s2=
1
6
[(107-113)2+2(111-113)2+(113-113)2+(114-113)2+(122-113)2]=2,
S2=
1
6
[(108-113)2+(109-113)2+(110-113)2+(112-113)2+(115-113)2+(124-113)2]=
88
3
,
.
x
=
.
x
,S2S2,
∴紅、藍兩人的平均成績相同,但紅軍比藍軍射擊更穩(wěn)定.
點評:本題考查古典概型及其概率公式,涉及莖葉圖和均值方差的應用,屬基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

不等式組
2x-y+2≥0
x+y-2≤0
y≥0
表示的平面區(qū)域的形狀為( 。
A、三角形B、平行四邊形
C、梯形D、正方形

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

求函數(shù)y=2x+
1-2x
的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

求證:函數(shù)f(x)=
x
x+2
在區(qū)間(-∞,-2)上是增函數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

計算:
(1)(2
1
4
 
1
2
-(-9.6)0-(3
3
8
 -
2
3
+(1.5)-2;
(2)
1
2
lg
32
49
-2lg2+
1
2
lg(5×49).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}滿足a1=-3,且2an+1an+an+1+4an+3=0(n∈N*),記bn=
1
an+1
(n∈N*).
(1)求證:數(shù)列{bn+2}為等比數(shù)列,并求數(shù)列{bn}的通項公式;
(2)設數(shù)列{
1
2nanbn
}的前n項和Sn,求證:Sn
2
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

平面直角坐標系中有A(3,4),B(0,1),C(3,-2),D(3-2
2
,0)四點,
(1)試說明四點在同一個圓上,并給出圓的方程;
(2)若(1)中的圓與直線x-y+a=0交于A,B兩點,且OA⊥OB,求a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=
ax+b
x2+1
是定義在(-∞,+∞)上的奇函數(shù),且f(
1
2
)=
2
5

(1)求實數(shù)a,b,并確定函數(shù)f(x)的解析式;
(2)判斷f(x)在(-1,1)上的單調(diào)性,并用定義證明你的結(jié)論;
(3)寫出f(x)的單調(diào)減區(qū)間,并判斷f(x)有無最大值或最小值?如有,寫出最大值或最小值.(不需要說明理由)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知實數(shù)x滿足不等式2(log 
1
2
x)2+7log 
1
2
x+3≤0
(1)求x的取值范圍;
(2)在(1)的條件下,求函數(shù)f(x)=(log2
x
4
)•(log2
x
2
)的最大值和最小值.

查看答案和解析>>

同步練習冊答案