12.青島發(fā)生輸油管道爆炸事故造成膠州灣局部污染,國家海洋局用分層抽樣的方法從國家環(huán)保專家、海洋生物專家、油氣專家三類專家?guī)熘谐槿∪舾山M成研究小組赴泄油海域工作,有關(guān)數(shù)據(jù)見表一(單位:人)
表一:
  相關(guān)人員數(shù)抽取人數(shù)
 環(huán)保專家 24 x
 海洋生物專家 48 4
 油氣專家 36 y
表二:
  重度污染 輕度污染 合計
 身體健康 30 A 50
 身體不健康 B 10 60
 合計 C D E
海洋生物專家為了檢測該地污染后對海洋生物身體健康的影響,隨機選取了110只海豚進行了檢測,并將有關(guān)數(shù)據(jù)整理為不完整的2×2的列聯(lián)表,如表二.
(1)求研究小組的人數(shù);
(2)寫出表二中A,B,C,D,E的值,并做出判斷能否有99%的把握認為“海豚身體健康與受到污染有關(guān)”;(3)若從環(huán)保小組的環(huán)保專家和油氣專家隨機選2人撰寫研究報告,求其中恰好有1人為環(huán)保專家的概率.
解答時可參考下面公式及臨界值表:k0=$\frac{n(ad-bc)^{2}}{(a+b)(b+d)(a+b)(c+b)}$.
 P(K2≥k0 0.10 0.05 0.025 0.010 0.005
 k0 2.706 3.841 5.024 0.635 7.879

分析 (1)根據(jù)分層抽樣,比值相等,可以求出x=2,y=3.進而得研究小組的總?cè)藬?shù);
(2)可求得K2=$\frac{110×(30×10-50×20)^{2}}{50×60×80×30}$≈7.846>6.636.根據(jù)臨界值表可以判斷.
(3)其中恰好有1人為環(huán)保專家,確定基本事件的個數(shù),進而可求概率.

解答 解:(1)依題意,$\frac{x}{24}=\frac{4}{48}=\frac{y}{36}$,
得x=2,y=3.
研究小組的總?cè)藬?shù)為2+3+4=9(人)…3 分
(Ⅱ)根據(jù)列聯(lián)表特點得:A=20,B=50,C=80,D=30,E=110.…(5分)
可求得K2=$\frac{110×(30×10-50×20)^{2}}{50×60×80×30}$≈7.846>6.636,
由臨界值表知,有99%的把握認為海豚身體健康與受到污染有關(guān).…8 分
(Ⅲ)設(shè)研究小組中兩名環(huán)保專家為a1,a2,3名油氣專家為b1,b2,b3,
從這5人中隨機選2人,共有${C}_{5}^{2}$=10種等可能結(jié)果.
其中恰好有1人為環(huán)保專家的結(jié)果有6種.
所以恰好有1人為環(huán)保專家的概率為P=$\frac{6}{10}$=0.6…12 分

點評 本題以數(shù)據(jù)為載體,考查實際運用,考查獨立性檢驗,考查概率問題,關(guān)鍵是正確理解表格中的數(shù)據(jù),從而正確計算.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)f(x)=Asin(ωx+φ)(φ|<$\frac{π}{2}$)的部分圖象如圖所示.
(1)求函數(shù)f(x)的解析式;
(2)求f(x)的單調(diào)減區(qū)間
(3)當x∈[0,$\frac{π}{12}$]時,求函數(shù)f(x)的最大值,并且求使f(x)取得最大值時x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.若函數(shù)f(x)=$\frac{1}{3}$x3+$\frac{1}{2}$(a+2)x2+(2a+1)x+1沒有極值點,則實數(shù)a的取值范圍是[0,4].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知兩矩形ABCD與ADEF所在的平面互相垂直,AB=1,若將△DEF沿直線FD翻折,使得點E落在邊BC上(即點P),則當AD取最小值時,邊AF的長是$\sqrt{2}$;此時四面體F-ADP的外接球的半徑是$\frac{\sqrt{6}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知雙曲線$\frac{{y}^{2}}{4}$-$\frac{{x}^{2}}{a}$=1的漸近線方程為y=±$\frac{2\sqrt{3}}{3}$x,則此雙曲線的離心率是( 。
A.$\frac{\sqrt{7}}{2}$B.$\frac{\sqrt{13}}{3}$C.$\frac{5}{3}$D.$\frac{\sqrt{21}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.若f(sin2x)=5sinx-5cosx-6(0<x<π),則f(-$\frac{24}{25}$)=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知A(3,$\sqrt{3}$),O是坐標原點,點P(x,y)的坐標滿足$\left\{\begin{array}{l}{\sqrt{3}-y≤0}\\{x-\sqrt{3}+0≥0}\\{y≥0}\end{array}\right.$,設(shè)Z為$\overrightarrow{OA}$在$\overrightarrow{OP}$上的投影,則Z的取值范圍是( 。
A.[-$\sqrt{3}$,$\sqrt{3}$]B.[-3,3]C.[-$\sqrt{3}$,3]D.[-3,$\sqrt{3}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.半徑為100mm的圓上,有一段弧長為300mm,此弧所對的圓心角的弧度數(shù)為3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知f(x),g(x)分別是定義在R上的偶函數(shù)和奇函數(shù),且f(x)+g(x)=x3-x2+1,則f(1)-g(1)=( 。
A.-3B.-1C.1D.3

查看答案和解析>>

同步練習(xí)冊答案