分析 (1)由題意求出A,T,利用周期公式求出ω,利用當(dāng)x=$\frac{π}{6}$時(shí)取得最大值2,求出φ,得到函數(shù)的解析式,即可得解.
(2)由$\frac{π}{2}+2kπ≤2x+\frac{π}{6}≤\frac{3π}{2}+2kπ$,k∈Z即可解得f(x)的單調(diào)減區(qū)間.
(3)由$x∈[0,\frac{π}{12}]$,可求2x+$\frac{π}{6}$的范圍,利用正弦函數(shù)的圖象和性質(zhì)即可得解最大值.
解答 (本題滿分為14分)
解:(1)∵A>0,ω>0,
∴由圖象知A=2,…(1分)
由于f(x)的最小正周期$T=4×(\frac{5π}{12}-\frac{π}{6})=π$,故$ω=\frac{2π}{T}=2$,…(3分)
將點(diǎn)$(\frac{π}{6},2)$代入f(x)的解析式得:$sin(\frac{π}{3}+φ)=1$,
又$|φ|<\frac{π}{2}$,
可得:$φ=\frac{π}{6}$,…(5分)
故函數(shù)f(x)的解析式為:$f(x)=2sin(2x+\frac{π}{6})$.…(6分)
(2)由$\frac{π}{2}+2kπ≤2x+\frac{π}{6}≤\frac{3π}{2}+2kπ$,…(8分)
得$\frac{π}{6}+kπ≤x≤\frac{2π}{3}+kπ$,k∈Z,
所以減區(qū)間為:$[{\frac{π}{6}+kπ,\frac{2π}{3}+kπ}]({k∈Z})$.…(10分)
(3)當(dāng)$x∈[0,\frac{π}{12}]$時(shí),可得:$2x+\frac{π}{6}∈[\frac{π}{6},\frac{π}{3}]$,…(12分)
所以當(dāng)$2x+\frac{π}{6}=\frac{π}{3}$,即$x=\frac{π}{12}$時(shí),f(x)的最大值$\sqrt{3}$.…(14分)
點(diǎn)評(píng) 本題主要考查了由y=Asin(ωx+φ)的部分圖象確定其解析式,正弦函數(shù)的圖象和性質(zhì),解題時(shí)要注意函數(shù)的周期的求法,考查計(jì)算能力,是?碱}型,屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $A_3^3$•$A_4^3$ | B. | $A_3^3$•$A_3^3$ | C. | $A_4^3$•$A_4^3$ | D. | 2$A_3^3$•$A_3^3$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -$\frac{π}{6}$ | B. | $\frac{π}{3}$ | C. | -$\frac{π}{3}$ | D. | -$\frac{π}{6}$或$\frac{π}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
相關(guān)人員數(shù) | 抽取人數(shù) | |
環(huán)保專家 | 24 | x |
海洋生物專家 | 48 | 4 |
油氣專家 | 36 | y |
重度污染 | 輕度污染 | 合計(jì) | |
身體健康 | 30 | A | 50 |
身體不健康 | B | 10 | 60 |
合計(jì) | C | D | E |
P(K2≥k0) | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 |
k0 | 2.706 | 3.841 | 5.024 | 0.635 | 7.879 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com