3.若函數(shù)f(x)=$\frac{1}{3}$x3+$\frac{1}{2}$(a+2)x2+(2a+1)x+1沒有極值點,則實數(shù)a的取值范圍是[0,4].

分析 求函數(shù)的導(dǎo)數(shù),利用函數(shù)極值和導(dǎo)數(shù)之間的關(guān)系轉(zhuǎn)化為一元二次函數(shù)問題,結(jié)合判別式△≤0進(jìn)行求解即可.

解答 解:函數(shù)的導(dǎo)數(shù)f′(x)=x2+(a+2)x+(2a+1),為開口向上的拋物線,
若函數(shù)f(x)=$\frac{1}{3}$x3+$\frac{1}{2}$(a+2)x2+(2a+1)x+1沒有極值點,
則等價為f′(x)≥0恒成立,即判別式△=(a+2)2-4(2a+1)≤0,
即a2-4a≤0,得0≤a≤4,
故實數(shù)a的取值范圍是[0,4],
故答案為:[0,4].

點評 本題主要考查函數(shù)極值和單調(diào)性的關(guān)系,求函數(shù)的導(dǎo)數(shù),利用極值和導(dǎo)數(shù)之間的關(guān)系轉(zhuǎn)化為判別式△的關(guān)系是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知圓C的方程:x2+y2-2x-4y+a=0,a∈R.
(1)求實數(shù)a的取值范圍;
(2)若直線m:x-y-1=0與圓C交于點P,Q兩點且|PQ|=2$\sqrt{2}$,求實數(shù)a的值;
(3)已知點O為坐標(biāo)原點,平分圓C的面積的直線l分別與x,y軸的正半軸交于A,B兩點,設(shè)使△AOB的面積為S的直線l恰有兩條,求S的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知曲線C1的參數(shù)方程為$\left\{\begin{array}{l}{x=cosα}\\{y=1+sinα}\end{array}\right.$(α為參數(shù)),以原點為極點,x軸正半軸為極軸建立極坐標(biāo)系.曲線C2的極坐標(biāo)方程為ρsinθ=1.
(1)將曲線C1的普通方程和曲線C2的直角坐標(biāo)方程;
(2)求曲線C1與曲線C2的交點的直角坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.若二項式(3x-$\frac{1}{\root{3}{x}}$)n的展開式中各項系數(shù)之和為256.
(1)求展開式中二項式系數(shù)最大的項;
(2)求展開式中的常數(shù)項.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=|2x+a|,a∈R.
(Ⅰ)當(dāng)a=-1時,求不等式f(x)+|x+1|-3≤0的解集;
(Ⅱ)若對?x∈[1,2],f(x)<x2+1恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.(x2-x+ay)7的展開式中,x7y2的系數(shù)為-$\frac{105}{2}$,則a等于( 。
A.-2B.$\frac{1}{2}$C.±2D.±$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.在平面直角坐標(biāo)系中,過(1,0)點且傾率為-1的直線不經(jīng)過( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.青島發(fā)生輸油管道爆炸事故造成膠州灣局部污染,國家海洋局用分層抽樣的方法從國家環(huán)保專家、海洋生物專家、油氣專家三類專家?guī)熘谐槿∪舾山M成研究小組赴泄油海域工作,有關(guān)數(shù)據(jù)見表一(單位:人)
表一:
  相關(guān)人員數(shù)抽取人數(shù)
 環(huán)保專家 24 x
 海洋生物專家 48 4
 油氣專家 36 y
表二:
  重度污染 輕度污染 合計
 身體健康 30 A 50
 身體不健康 B 10 60
 合計 C D E
海洋生物專家為了檢測該地污染后對海洋生物身體健康的影響,隨機選取了110只海豚進(jìn)行了檢測,并將有關(guān)數(shù)據(jù)整理為不完整的2×2的列聯(lián)表,如表二.
(1)求研究小組的人數(shù);
(2)寫出表二中A,B,C,D,E的值,并做出判斷能否有99%的把握認(rèn)為“海豚身體健康與受到污染有關(guān)”;(3)若從環(huán)保小組的環(huán)保專家和油氣專家隨機選2人撰寫研究報告,求其中恰好有1人為環(huán)保專家的概率.
解答時可參考下面公式及臨界值表:k0=$\frac{n(ad-bc)^{2}}{(a+b)(b+d)(a+b)(c+b)}$.
 P(K2≥k0 0.10 0.05 0.025 0.010 0.005
 k0 2.706 3.841 5.024 0.635 7.879

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.與直線2x+y+1=0垂直,且交點在y軸上的直線方程為x-2y-2=0(要求寫一般式).

查看答案和解析>>

同步練習(xí)冊答案