分析 (Ⅰ)當a=-1時,不等式f(x)+|x+1|-3≤0,即為不等式|2x-1+|x+1|-3≤0,分類討論求不等式f(x)+|x+1|-3≤0的解集;
(Ⅱ)若對?x∈[1,2],f(x)<x2+1恒成立,即?x∈[1,2],|2x+a|<x2+1恒成立,分離參數求最值,即可求a的取值范圍.
解答 解:(Ⅰ) 當a=-1時,不等式f(x)+|x+1|-3≤0,即為不等式|2x-1+|x+1|-3≤0.
∴$\left\{\begin{array}{l}{x<-1}\\{-3x-3≤0}\end{array}\right.$或$\left\{\begin{array}{l}{-1≤x≤\frac{1}{2}}\\{-x-1≤0}\end{array}\right.$或$\left\{\begin{array}{l}{x>\frac{1}{2}}\\{3x-3≤0}\end{array}\right.$,
解得:x∈∅或-1≤x≤$\frac{1}{2}$或$\frac{1}{2}$<x≤1.
∴不等式|2x-1+|x+1|-3≤0的解集為[-1,1].…(5分)
(Ⅱ)?x∈[1,2],f(x)<x2+1恒成立,即?x∈[1,2],|2x+a|<x2+1恒成立,
而-x2-1<2x+a<x2+1,
∴?x∈[1,2],-x2-2x-1<a<x2-2x+1,恒成立,
設g(x)=-x2-2x-1,h(x)=x2-2x+1,
可轉化為∴?x∈[1,2],g(x)max<a<h(x)min,
∴-4<a<0,∴a的取值范圍是(-4,0).…(10分)
點評 本題考查絕對值不等式的解法,考查恒成立問題,考查學生分析解決問題的能力,屬于中檔題.
科目:高中數學 來源: 題型:選擇題
A. | 25 | B. | 125 | C. | 120 | D. | 24 |
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
分組 | 頻數 | 頻率 |
[50,60) | 4 | 0.08 |
[60,70) | 8 | 0.16 |
[70,80) | 10 | 0.20 |
[80,90) | 16 | 0.32 |
[90,100] | 12 | 0.24 |
合計 | 50 | 1 |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\frac{\sqrt{7}}{2}$ | B. | $\frac{\sqrt{13}}{3}$ | C. | $\frac{5}{3}$ | D. | $\frac{\sqrt{21}}{3}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com