A. | $\frac{9}{11}$ | B. | $\frac{2}{11}$ | C. | $\frac{3}{11}$ | D. | $\frac{1}{11}$ |
分析 根據P是BN上的一點,設$\overrightarrow{BP}$=λ$\overrightarrow{BN}$,把$\overrightarrow{AP}$表示成m$\overrightarrow{AB}$+n$\overrightarrow{AC}$形式,
利用$\overrightarrow{AP}$=m$\overrightarrow{AB}$+$\frac{2}{11}$$\overrightarrow{AC}$,列方程組求出m的值.
解答 解:∵P是BN上的一點,
設$\overrightarrow{BP}$=λ$\overrightarrow{BN}$,由$\overrightarrow{AN}$=$\frac{1}{4}$$\overrightarrow{NC}$,
則$\overrightarrow{AP}$=$\overrightarrow{AB}$+$\overrightarrow{BP}$
=$\overrightarrow{AB}$+λ$\overrightarrow{BN}$
=$\overrightarrow{AB}$+λ($\overrightarrow{AN}$-$\overrightarrow{AB}$)
=(1-λ)$\overrightarrow{AB}$+λ$\overrightarrow{AN}$
=(1-λ)$\overrightarrow{AB}$+$\frac{1}{5}$λ$\overrightarrow{AC}$
=m$\overrightarrow{AB}$+$\frac{2}{11}$$\overrightarrow{AC}$,
∴$\left\{\begin{array}{l}{m=1-λ}\\{\frac{1}{5}λ=\frac{2}{11}}\end{array}\right.$,
解得λ=$\frac{10}{11}$,m=$\frac{1}{11}$.
故選:D.
點評 本題考查了平面向量的基本定理應用問題,解題的關鍵是根據平面向量的基本定理構造關于λ,m的方程組.
科目:高中數學 來源: 題型:選擇題
A. | 拋物線的一部分 | B. | 一條拋物線 | C. | 雙曲線的一部分 | D. | 一條雙曲線 |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 217 | B. | 273 | C. | 455 | D. | 651 |
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com