15.已知$\frac{1+sin2θ}{co{s}^{2}θ-si{n}^{2}θ}$=-3,則tanθ=(  )
A.2B.-1C.-1或2D.1或-2

分析 利用二倍角公式,正弦、余弦化為切函數(shù),即可求出答案.

解答 解:由$\frac{1+sin2θ}{co{s}^{2}θ-si{n}^{2}θ}$=-3,
可得$\frac{{{{sin}^2}θ+{{cos}^2}θ+2sinθcosθ}}{{{{cos}^2}θ-{{sin}^2}θ}}=\frac{{{{tan}^2}θ+1+2tanθ}}{{1-{{tan}^2}θ}}$=-3,
解之得tanθ=2或-1,
又因為cos2θ≠sin2θ,
所以tan2θ≠1,
所以tanθ=2.
故選:A.

點評 本題考查了二倍角公式與弦化切的應用問題,是基礎題目.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

5.張老師進行教學改革實驗,甲班用“模式一”進行教學,乙班用“模式二”進行教學,經(jīng)過一段時間后,兩班用同一套試卷進行測試(滿分100 分),按照優(yōu)秀(大于或等于90 分)和非優(yōu)秀(90 分以下)統(tǒng)計成績,得到如下2×2列聯(lián)表:
優(yōu)秀非優(yōu)秀合計
甲班10
乙班26
合計90
已知在兩個班總計90人中隨機抽取1人為優(yōu)秀的概率為$\frac{4}{15}$.
參考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$(其中n=a+b+c+d).
P(K2≥k00.100.050.0100.005
k02.7063.8416.6357.879
(1)請完成上面的2×2列聯(lián)表;
(2)根據(jù)2×2列聯(lián)表的數(shù)據(jù),判斷能否有95%以上的把握認為“成績優(yōu)秀與教學模式有關”;
(3)若甲班成績優(yōu)秀的10 名同學中,男生有6 名,女生有4 名,現(xiàn)從這10 名同學中選2 名學生參加座談,求其中至少含1 名女生的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.已知函數(shù)f(x)=x2-bx+c,f(x)的對稱軸為x=1且f(0)=-1.
(1)求b,c的值;
(2)當x∈[0,3]時,求f(x)的取值范圍.
(3)若不等式f(log2k)>f(2)成立,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.設i為虛數(shù)單位,若復數(shù)z滿足(2+i)z=5i,則z的虛部為( 。
A.2B.-2C.2iD.-2i

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.在△ABC中,角A,B,C所對的邊分別是a,b,c,若$\frac{2cosA-cosC}{cosB}$=$\frac{c-2a}$,且 a,b,c成等差數(shù)列.
(1)求cosC;
(2)若b=3,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.一張儲蓄卡的密碼共有6位數(shù)字,每位數(shù)字都可以從0~9這10個數(shù)字中任選一個,某人在銀行自動提款機上取錢時,忘記了密碼的最后一個數(shù)字,如果他記得密碼的最后一位是偶數(shù),則它恰好在第2次按對的概率是$\frac{1}{5}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.在等比數(shù)列{an}中,若an>0,a7=$\frac{{\sqrt{2}}}{2}$,則$\frac{1}{a_3}$+$\frac{2}{{{a_{11}}}}$的最小值為( 。
A.2$\sqrt{2}$B.4C.8D.16

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.在等差數(shù)列{an}中,a1=-2016,其前n項和為Sn,若$\frac{{{S_{2016}}}}{2016}$-$\frac{{{S_{2013}}}}{2013}$=3,則S2016=(  )
A.-2016B.-2015C.2016D.2015

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.如圖,在長方體ABCD-A1B1C1D1中,AB=AA1=1,E為BC中點.
(Ⅰ)求證:C1D⊥D1E;
(Ⅱ)在棱AA1上是否存在一點M使得BM∥平面AD1E?若存在,求$\frac{AM}{A{A}_{1}}$的值;若不存在,說明理由;
(Ⅲ)若二面角B1-AE-D1的大小為90°,求AD的長.

查看答案和解析>>

同步練習冊答案