【題目】已知函數(shù),其中

(1)若曲線與曲線在點處有相同的切線,試討論函數(shù)的單調(diào)性;

(2)若,函數(shù)上為增函數(shù),求證:

【答案】(1)詳見解析;(2)詳見解析.

【解析】試題分析:(1)根據(jù)求得 ,再求 ,導數(shù)的兩個零點分別是 ,分 三種情況討論函數(shù)的單調(diào)區(qū)間;(2)首先求函數(shù)的導數(shù),,將問題轉(zhuǎn)化為 ,當 ,即 ,當時,將問題轉(zhuǎn)化為恒成立問題,求所設函數(shù)的最值,即可求得結果.

試題解析:解:(1)由題意可得,

,即,

時,,此時上遞增;

時,當時,;當時,

上遞增,在上遞減;

時,當時,;當時,;

上遞增,在上遞減;

(2)由題意可得恒成立,

,∴,即恒成立,

,即恒成立,

,,

上遞增,

,∴

,∴

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】(本小題滿分10分)選修4—5:不等式選講

已知

1)關于的不等式恒成立,求實數(shù)的取值范圍;

2)設,且,求證:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)y (nZ)的圖像與兩坐標軸都無公共點,且其圖像關于y軸對稱,n的值,并畫出函數(shù)圖像.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】甲乙兩人參加某種選拔測試,在備選的10道題中,甲答對其中每道題的概率都是,乙能答對其中的8道題.規(guī)定每次考試都從備選的10道題中隨機抽出4道題進行測試,只有選中的4個題目均答對才能入選;
(Ⅰ)求甲恰有2個題目答對的概率及甲答對題目數(shù)的數(shù)學期望與方差。
(Ⅱ)求乙答對的題目數(shù)X的分布列。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】近年來,我國電子商務蓬勃發(fā). 2016年“618”期間,某網(wǎng)購平臺的銷售業(yè)績高達516億元人民幣,與此同時,相關管理部門推出了針對該網(wǎng)購平臺的商品和服務的評價系統(tǒng). 評價系統(tǒng)中選出200次成功交易,并對其評價進行統(tǒng)計,網(wǎng)購者對商品的滿意率為0.6,對服務的滿意率為0.75,其中對商品和服務滿意的交易為80次.

(Ⅰ) 根據(jù)已知條件完成下面列聯(lián)表,并回答能有99%的把握認為“網(wǎng)購者對商品滿意與服務滿意之間有關系”?

對服務滿意

對服務不滿意

合計

對商品滿意

80

對商品不滿意

合計

200

(Ⅱ) 若將頻率視為概率,某人在該網(wǎng)購平臺上進行的3次購物中,設對商品和服務滿意的次數(shù)為隨機變量,求的分布列和數(shù)學期望.

附:(其中為樣本容量

0.15

0.10

0.05

0.025

0.010

2.072

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(1)判斷的奇偶性;

(2)用單調(diào)性的定義證明上的增函數(shù);

(3)若對任意的,不等式恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】國際奧委會將于2017年9月15日在秘魯利馬召開130次會議決定2024年第33屆奧運

會舉辦地。目前德國漢堡、美國波士頓等申辦城市因市民擔心賽事費用超支而相繼退出。某機構為調(diào)查我國公民對申辦奧運會的態(tài)度,選了某小區(qū)的100位居民調(diào)查結果統(tǒng)計如下:

支持

不支持

合計

年齡不大于50歲

80

年齡大于50歲

10

合計

70

100

(1)根據(jù)已有數(shù)據(jù),把表格數(shù)據(jù)填寫完整;

(2)能否在犯錯誤的概率不超過5%的前提下認為不同年齡與支持申辦奧運無關?

(3)已知在被調(diào)查的年齡大于50歲的支持者中有5名女性,其中2位是女教師,現(xiàn)從這5名女性中隨機抽取3人,求至多有1位教師的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(1)已知函數(shù)ylg(x22xa)的定義域為R,求實數(shù)a的取值范圍;

(2)已知函數(shù)f(x)lg[(a2-1)x2+(2a+1)x+1],若f(x)的定義域為R,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設首項為1的正項數(shù)列{an}的前n項和為Sn,且Sn+1-3Sn=1.

(1) 求證:數(shù)列{an}為等比數(shù)列;

(2) 數(shù)列{an}是否存在一項ak,使得ak恰好可以表示為該數(shù)列中連續(xù)r(r∈N*,r≥2)項的和?請說明理由.

查看答案和解析>>

同步練習冊答案