6.記數(shù)列{an}的前n項(xiàng)和為Sn,滿足2an+1+Sn-2=0(n∈N*),且a1=1.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若{Sn+λ•n+$\frac{λ}{{2}^{n}}$}為等差數(shù)列,求出λ的值.

分析 (1)由 2an+1+Sn-2=0,得2a2+a1=2,得到a2=$\frac{1}{2}$,由2an+1+Sn=2,2an+Sn-1=2(n≥2)相減,數(shù)列{an}從第二項(xiàng)開始,是以為$\frac{1}{2}$首項(xiàng),以$\frac{1}{2}$為公比的等比數(shù)列,得到通項(xiàng)公式;
(2)若{Sn+λ•n+$\frac{λ}{{2}^{n}}$}為等差數(shù)列,分別取n=1,2,3,利用等差中項(xiàng)得到關(guān)于λ的方程解之即可.

解答 解:(1)由已知得到 2an+1+Sn=2,得2a2+a1=2,
又a1=1,
∴a2=$\frac{1}{2}$,
由2an+1+Sn=2,2an+Sn-1=2(n≥2)相減,
可得2an+1-an=0,
∴$\frac{{a}_{n+1}}{{a}_{n}}=\frac{1}{2}$.
又a2=$\frac{1}{2}$,
∴數(shù)列{an}是以為1首項(xiàng),以$\frac{1}{2}$為公比的等比數(shù)列,
∴an=$(\frac{1}{2})^{n-1}$;
(2)若{Sn+λ•n+$\frac{λ}{{2}^{n}}$}為等差數(shù)列,則2(S2+2λ+$\frac{λ}{4}$)=(S1+λ+$\frac{λ}{2}$)+(S3+3λ+$\frac{λ}{8}$),整理得λ=2.

點(diǎn)評 本題考查了遞推式的應(yīng)用、等比數(shù)列的通項(xiàng)公式,等差中項(xiàng),考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.設(shè)x,y滿足約束條件$\left\{{\begin{array}{l}{x-y-1≥0}\\{3x-2y-6≤0}\\{x≥0}\\{y≥0}\end{array}}\right.$,若目標(biāo)函數(shù)$z=\frac{1}{m}\sqrt{{x^2}+{y^2}-9}(m>0)$的最大值為2,則$y=cos(mx+\frac{π}{3})$的圖象向左平移$\frac{π}{3}$后的表達(dá)式為(  )
A.$y=cos(2x+\frac{2π}{3})$B.y=cos2xC.y=-cos2xD.$y=cos(2x-\frac{π}{3})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知a,b,c分別為△ABC的三個內(nèi)角A,B,C的對邊,a=2,且∠A=60°,則△ABC面積的最大值為$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知圓C:x2+y2=9,點(diǎn)A(-5,0),在直線OA上(O為坐標(biāo)原點(diǎn)),存在定點(diǎn)B(不同于點(diǎn)A),滿足:對于圓C上任一點(diǎn)P,都有$\frac{PB}{PA}$為一常數(shù),試求所有滿足條件的點(diǎn)B的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知函數(shù)f(x)=$\left\{\begin{array}{l}1+|lg(x-1)|,x>1\\ g(x),x<1\end{array}$的圖象關(guān)于點(diǎn)P對稱,且函數(shù)y=f(x+1)-1為奇函數(shù),則下列結(jié)論:
①點(diǎn)P的坐標(biāo)為(1,1);
②當(dāng)x∈(-∞,0)時,g(x)≤-1恒成立;
③關(guān)于x的方程f(x)=a,a∈R有且只有兩個實(shí)根,
其中正確結(jié)論的個數(shù)為( 。
A.0個B.1個C.2個D.3個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知拋物線C:y2=2px(p>0),其焦點(diǎn)F到準(zhǔn)線的距離為2,直線l與拋物線C相交于不同于原點(diǎn)的兩點(diǎn)A,B.
(1)求拋物線C的方程;
(2)若以AB為直徑的圓恒過原點(diǎn)O,求證:直線l過定點(diǎn);
(3)若直線l過拋物線C的焦點(diǎn)F,求△OAB面積的取值范圍(O為坐標(biāo)原點(diǎn)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.若π<α<$\frac{3π}{2}$,sin($\frac{3π}{2}$-α)+cos(2π-α)$\sqrt{\frac{1+sinα}{1-sinα}}$+1=$\frac{7}{5}$,則sinα-cosα=(  )
A.$\frac{1}{5}$B.±$\frac{1}{5}$C.$\frac{7}{5}$D.±$\frac{7}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.某四棱柱的三視圖如圖所示,則在四個側(cè)面中,直角三角形的個數(shù)為( 。
A.1個B.2個C.3個D.4個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)f(x)=1-$\frac{a}{x}$+ln$\frac{1}{x}$(a為實(shí)數(shù)).
(1)當(dāng)a=1時,求函數(shù)f(x)的圖象在點(diǎn)($\frac{1}{2}$,f($\frac{1}{2}$))處的切線方程;
(2)已知n∈N*,求證:ln(n+1)<1+$\frac{1}{2}$+$\frac{1}{3}$+$\frac{1}{4}$+$\frac{1}{5}$+…+$\frac{1}{n}$.

查看答案和解析>>

同步練習(xí)冊答案