【題目】將甲、乙兩顆骰子先后各拋一次,分別表示拋擲甲、乙兩顆骰子所出現(xiàn)的點(diǎn)數(shù).圖中三角形陰影部分的三個(gè)頂點(diǎn)為、)和.
(1)若點(diǎn)落在如圖陰影所表示的平面區(qū)域(包括邊界)的事件記為,求事件的概率;
(2)若點(diǎn)落在直線(為常數(shù))上,且使此事件的概率最大,求和的值.
【答案】(1); (2),.
【解析】
(1)由題意知,本題是一個(gè)古典概型,試驗(yàn)發(fā)生包含的基本事件總數(shù)為6×6,畫(huà)出圖形,滿足條件的事件可以列舉出有6個(gè)整點(diǎn),根據(jù)古典概型概率公式得到結(jié)果.
(2)點(diǎn)落在(為常數(shù))的直線上,且使此事件的概率最大,只需基本事件最多,由,畫(huà)出圖形,直線過(guò)時(shí)適合,求得,此時(shí)有6個(gè)整點(diǎn),得到結(jié)果.
基本事件總數(shù)為,
如圖滿足在陰影三角形內(nèi)的有:
當(dāng)時(shí),,2,3;
當(dāng)時(shí),,2;
當(dāng)時(shí),﹒
共有(1,1),(1,2),(1,3),(2,1),(2,2),(3,1)6個(gè)點(diǎn)落在條件區(qū)域內(nèi),
.
(2)點(diǎn)落在(為常數(shù))的直線上,且使此事件的概率最大. 只需基本事件最多.
由,將直線平移,如圖可知,當(dāng).
即當(dāng)時(shí),(1,6),(2,5),(3,4),(4,3),(5,2),(6,1)基本事件最多,共有6種
此時(shí)最大.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)若,求曲線在點(diǎn)處的切線方程;
(2)若只有一個(gè)零點(diǎn),且,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某企業(yè)為了檢查生產(chǎn)產(chǎn)品的甲、乙兩條流水線的生產(chǎn)情況,隨機(jī)地從這兩條流水線上生產(chǎn)的大量產(chǎn)品中各抽取50件產(chǎn)品作為樣本,測(cè)出它們的這一項(xiàng)質(zhì)量指標(biāo)值.若該項(xiàng)質(zhì)量指標(biāo)值落在內(nèi),則為合格品,否則為不合格品.下表是甲流水線樣本的頻數(shù)分布表,下圖是乙流水線樣本的頻率分布直方圖.
甲流水線樣本的頻數(shù)分布表
質(zhì)量指標(biāo)值 | 頻數(shù) |
9 | |
10 | |
17 | |
8 | |
6 |
乙流水線樣本的頻率分布直方圖
(1)根據(jù)圖形,估計(jì)乙流水線生產(chǎn)的產(chǎn)品的該項(xiàng)質(zhì)量指標(biāo)值的中位數(shù);
(2)設(shè)該企業(yè)生產(chǎn)一件合格品獲利100元,生產(chǎn)一件不合格品虧損50元,若某個(gè)月內(nèi)甲、乙兩條流水線均生產(chǎn)了1000件產(chǎn)品,若將頻率視為概率,則該企業(yè)本月的利潤(rùn)約為多少元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某工廠利用隨機(jī)數(shù)表對(duì)生產(chǎn)的600個(gè)零件進(jìn)行抽樣測(cè)試,先將600個(gè)零件進(jìn)行編號(hào),編號(hào)分別為001,002,,599,600從中抽取60個(gè)樣本,如下提供隨機(jī)數(shù)表的第4行到第6行:
32 21 18 34 29 78 64 54 07 32 52 42 06 44 38 12 23 43 56 77 35 78 90 56 42
84 42 12 53 31 34 57 86 07 36 25 30 07 32 86 23 45 78 89 07 23 68 96 08 04
32 56 78 08 43 67 89 53 55 77 34 89 94 83 75 22 53 55 78 32 45 77 89 23 45
若從表中第6行第6列開(kāi)始向右依次讀取3個(gè)數(shù)據(jù),則得到的第6個(gè)樣本編號(hào)
A. 522B. 324C. 535D. 578
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,平面ABCD,底部ABCD為菱形,E為CD的中點(diǎn).
(Ⅰ)求證:BD⊥平面PAC;
(Ⅱ)若∠ABC=60°,求證:平面PAB⊥平面PAE;
(Ⅲ)棱PB上是否存在點(diǎn)F,使得CF∥平面PAE?說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】一商場(chǎng)對(duì)每天進(jìn)店人數(shù)和商品銷(xiāo)售件數(shù)進(jìn)行了統(tǒng)計(jì)對(duì)比,得到如下表格:
人數(shù) | 10 | 15 | 20 | 25 | 30 | 35 | 40 |
件數(shù) | 4 | 7 | 12 | 15 | 20 | 23 | 27 |
(1)在答題卡給定的坐標(biāo)系中畫(huà)出表中數(shù)據(jù)的散點(diǎn)圖,并由散點(diǎn)圖判斷銷(xiāo)售件數(shù)與進(jìn)店人數(shù)是否線性相關(guān)?(給出判斷即可,不必說(shuō)明理由);
(2)建立關(guān)于的回歸方程(系數(shù)精確到0.01),預(yù)測(cè)進(jìn)店人數(shù)為80時(shí),商品銷(xiāo)售的件數(shù)(結(jié)果保留整數(shù)).
(參考數(shù)據(jù):,,,,,)
參考公式:,,其中,為數(shù)據(jù)的平均數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】大學(xué)先修課程,是在高中開(kāi)設(shè)的具有大學(xué)水平的課程,旨在讓學(xué)有余力的高中生早接受大學(xué)思維方式、學(xué)習(xí)方法的訓(xùn)練,為大學(xué)學(xué)習(xí)乃至未來(lái)的職業(yè)生涯做好準(zhǔn)備.某高中成功開(kāi)設(shè)大學(xué)先修課程已有兩年,共有250人參與學(xué)習(xí)先修課程.
(Ⅰ)這兩年學(xué)校共培養(yǎng)出優(yōu)等生150人,根據(jù)下圖等高條形圖,填寫(xiě)相應(yīng)列聯(lián)表,并根據(jù)列聯(lián)表檢驗(yàn)?zāi)芊裨诜稿e(cuò)的概率不超過(guò)0.01的前提下認(rèn)為學(xué)習(xí)先修課程與優(yōu)等生有關(guān)系?
優(yōu)等生 | 非優(yōu)等生 | 總計(jì) | |
學(xué)習(xí)大學(xué)先修課程 | 250 | ||
沒(méi)有學(xué)習(xí)大學(xué)先修課程 | |||
總計(jì) | 150 |
(Ⅱ)某班有5名優(yōu)等生,其中有2名參加了大學(xué)生先修課程的學(xué)習(xí),在這5名優(yōu)等生中任選3人進(jìn)行測(cè)試,求這3人中至少有1名參加了大學(xué)先修課程學(xué)習(xí)的概率.
參考數(shù)據(jù):
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 |
參考公式:,其中
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】從某企業(yè)生產(chǎn)的某種產(chǎn)品中抽取100件,測(cè)量這些產(chǎn)品的一項(xiàng)質(zhì)量指標(biāo)值,由測(cè)量表得如下頻數(shù)分布表:
質(zhì)量指標(biāo)值分組 | [75,85) | [85,95) | [95,105) | [105,115) | [115,125) |
頻數(shù) | 6 | 26 | 38 | 22 | 8 |
(I)在答題卡上作出這些數(shù)據(jù)的頻率分布直方圖:
(II)估計(jì)這種產(chǎn)品質(zhì)量指標(biāo)值的平均數(shù)及方差(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);
(III)根據(jù)以上抽樣調(diào)查數(shù)據(jù),能否認(rèn)為該企業(yè)生產(chǎn)的這種產(chǎn)品符合“質(zhì)量指標(biāo)值不低于95的產(chǎn)品至少要占全部產(chǎn)品的80%”的規(guī)定?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】隨著“北京八分鐘”在韓國(guó)平昌冬奧會(huì)驚艷亮相,冬奧會(huì)正式進(jìn)入了北京周期,全社會(huì)對(duì)冬奧會(huì)的熱情空前高漲.
(1)為迎接冬奧會(huì),某社區(qū)積極推動(dòng)冬奧會(huì)項(xiàng)目在社區(qū)青少年中的普及,并統(tǒng)計(jì)了近五年來(lái)本社區(qū)冬奧項(xiàng)目青少年愛(ài)好者的人數(shù)(單位:人)與時(shí)間(單位:年),列表如下:
依據(jù)表格給出的數(shù)據(jù),是否可用線性回歸模型擬合與的關(guān)系,請(qǐng)計(jì)算相關(guān)系數(shù)并加以說(shuō)明(計(jì)算結(jié)果精確到0.01).
(若,則線性相關(guān)程度很高,可用線性回歸模型擬合)
附:相關(guān)系數(shù)公式,參考數(shù)據(jù).
(2)某冰雪運(yùn)動(dòng)用品專(zhuān)營(yíng)店為吸引廣大冰雪愛(ài)好者,特推出兩種促銷(xiāo)方案.
方案一:每滿600元可減100元;
方案二:金額超過(guò)600元可抽獎(jiǎng)三次,每次中獎(jiǎng)的概率同為 ,且每次抽獎(jiǎng)互不影響,中獎(jiǎng)1次打9折,中獎(jiǎng)2次打8折,中獎(jiǎng)3次打7折. v
兩位顧客都購(gòu)買(mǎi)了1050元的產(chǎn)品,并且都選擇第二種優(yōu)惠方案,求至少有一名顧客比選擇方案一更優(yōu)惠的概率;
②如果你打算購(gòu)買(mǎi)1000元的冰雪運(yùn)動(dòng)用品,請(qǐng)從實(shí)際付款金額的數(shù)學(xué)期望的角度分析應(yīng)該選擇哪種優(yōu)惠方案.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com