4.已知空間整數(shù)點(diǎn)的序列如下:(1,1,1)(1,1,2)(1,2,1)(2,1,1)(1,1,3)(1,3,1)(3,1,1)(1,2,2)(2,1,2)(2,2,1)(1,1,4)(1,4,1)(4,1,1)(1,2,3)(1,3,2)…,則(4,2,1)是這個序列中的第29個.

分析 把握數(shù)對的規(guī)律:①兩個數(shù)之和從3開始,②都是從第一個數(shù)為1,第二數(shù)1,進(jìn)行排列;從而可得結(jié)論

解答 解:和為3的有1個,和為4的有3個,和為5的有6個,
和為6的有(1,1,4),(1,4,1),(4,1,1),(1,2,3),(1,3,2),(2,1,3),(2,3,1),(3,1,2),(3,2,1),(2,2,2)共有10個,
和為7的有(1,1,5),(1,5,1)(5,1,1),(1,2,4),(1,4,2),(2,1,4),(2,4,1),(4,1,2),(4,2,1)等,所以(4,2,1)在和為7的第29個,
所以(4,2,1)是這個序列中的第29個;
故答案為:29.

點(diǎn)評 本題主要考查了歸納法,解題關(guān)鍵是找出序列的規(guī)律,同時考查了分析問題的能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.設(shè)函數(shù)f(x)=x2+2(a-a2)x+4a-1,若存在x1∈[a-2,a-1],存在x2∈[a+3,a+6],滿足f(x1+1)=f(x2),則實(shí)數(shù)a的取值范圍為($\frac{2-\sqrt{14}}{2}$,$\frac{2-\sqrt{10}}{2}$)∪($\frac{2+\sqrt{10}}{2}$,$\frac{2+\sqrt{14}}{2}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.下列各組數(shù),可以是鈍角三角形的長的是( 。
A.6,7,8B.7,8,10C.2,6,7D.5,12,13

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.某大學(xué)中文系一、二、三、四年級的學(xué)生數(shù)之比為5:2:3:4,要用分層抽樣的方法從該系所有本科生中抽取一個容量為280的樣本,則應(yīng)抽取二年級的學(xué)生為( 。
A.40人B.60人C.80人D.20人

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知橢圓 $\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的左右焦點(diǎn)分別為F1,F(xiàn)2,離心率為$\frac{{\sqrt{6}}}{3}$,直線y=kx與橢圓相交于 A、B 兩點(diǎn),|AF2|+|BF2|=2$\sqrt{3}$.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)M,N 分別為線段AF2,BF2的中點(diǎn),原點(diǎn)O在以MN為直徑的圓內(nèi),求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.在斜三角形ABC中,$\frac{tanA+tanB+tanC}{2tanA•tanB•tanC}$=( 。
A.1B.$\frac{1}{2}$C.2D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知直線的傾斜角的范圍是a∈[$\frac{π}{4}$,$\frac{π}{2}$],則此直線的斜率k的取值范圍是[1,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù) f(x)=Acos(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的部分圖象如圖所示.
(1)求f(x)的解析式;
(2)設(shè)α,β為銳角,cosα=$\frac{{\sqrt{5}}}{5}$,sin(α+β)=$\frac{{22\sqrt{5}}}{65}$,求 f($\frac{β}{2}$)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.設(shè)函數(shù)$f(x)=cos(ωx+φ)(ω>0,-\frac{π}{2}<φ<0)$的最小正周期為π,且$f(\frac{π}{4})=\frac{{\sqrt{3}}}{2}$.
(1)求ω和φ的值;
(2)給定坐標(biāo)系中作出函數(shù)f(x)在[0,π]上的圖象,并結(jié)合圖象寫出函數(shù)的單調(diào)遞減區(qū)間(直接寫出結(jié)果即可,不需要敘述過程);
(3)若$f(x)>\frac{{\sqrt{2}}}{2}$,求x的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案