15.下列各組數(shù),可以是鈍角三角形的長的是( 。
A.6,7,8B.7,8,10C.2,6,7D.5,12,13

分析 直接利用余弦定理判斷最大角的余弦值為負即可.

解答 解:考察選項可知,三角形是鈍角三角形最只可能是C與D中,
驗證選項C:最大角的余弦函數(shù)值為:$\frac{{2}^{2}+{6}^{2}-{7}^{2}}{2×2×6}$=-$\frac{3}{8}$<0,滿足題意的是選項C,
選項D,是直角三角形的三個邊長.
故選:C.

點評 本題考查余弦定理的應(yīng)用,判斷三角形的形狀,考查分析問題解決問題的能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知圓(x-2)2+y2=4的圓心為C,過原點O的直線l與圓交于A,B兩點.若△ABC的面積為1,則滿足條件的直線l有( 。
A.2條B.4條C.8條D.無數(shù)條

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知正方體ABCD-A1B1C1D1的棱長為1,E是棱D1C1的中點,點F在正方體內(nèi)部或正方體的表面上,若EF∥平面A1BC1,則動點F的軌跡所形成的區(qū)域面積是( 。
A.$\frac{9}{8}$B.$\frac{\sqrt{3}}{2}$C.$\frac{3\sqrt{3}}{4}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.在直三棱柱ABC-A1B1C1中,AB⊥BC,AB=6,BC=8,若此三棱柱外接球的半徑為13,則該三棱柱的表面積為( 。
A.624B.576C.672D.720

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知函數(shù)f(x+$\frac{1}{2}$)為奇函數(shù),g(x)=f(x)+1,若an=g($\frac{n}{2017}$),則數(shù)列{an}的前2016項和為( 。
A.2017B.2016C.2015D.2014

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.某校高一年級某次數(shù)學(xué)競賽隨機抽取100名學(xué)生的成績,分組為[50,60),[60,70),[70,80),[80,90),[90,100],統(tǒng)計后得到頻率分布直方圖如圖所示:
(1)試估計這組樣本數(shù)據(jù)的眾數(shù)和中位數(shù)(結(jié)果精確到0.1);
(2)年級決定在成績[70,100]中用分層抽樣抽取6人組成一個調(diào)研小組,對高一年級學(xué)生課外學(xué)習(xí)數(shù)學(xué)的情況做一個調(diào)查,則在[70,80),[80,90),[90,100]這三組分別抽取了多少人?
(3)現(xiàn)在要從(2)中抽取的6人中選出正副2個小組長,求成績在[80,90)中至少有1人當(dāng)選為正、副小組長的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.若半徑為2 的球O中有一內(nèi)接圓柱,當(dāng)圓柱的側(cè)面積為8π時,圓柱的體積為4$\sqrt{2}π$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知空間整數(shù)點的序列如下:(1,1,1)(1,1,2)(1,2,1)(2,1,1)(1,1,3)(1,3,1)(3,1,1)(1,2,2)(2,1,2)(2,2,1)(1,1,4)(1,4,1)(4,1,1)(1,2,3)(1,3,2)…,則(4,2,1)是這個序列中的第29個.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.設(shè)α,β是兩個不同的平面,m,n,l 是三條不同的直線,下列命題中正確的是(  )
A.若α∩β=l,m?α,n?β,則m,n一定相交B.若α∥β,m?α,n?β,則m,n一定平行
C.若α∥β,m∥α,n∥β,則m,n一定平行D.若α⊥β,m⊥α,n⊥β,則m,n一定垂直

查看答案和解析>>

同步練習(xí)冊答案