分析 (1)設(shè)P(x,y),則Q(-2,y),表示出向量通過$\overrightarrow{QP}•\overrightarrow{QF}=\overrightarrow{FP}•\overrightarrow{FQ}$,可得軌跡方程.
(2)直線AB的斜率存在且不為0,設(shè)直線方程為x=ty+2,A(x1,y1),B(x2,y2),$M(-2,-\frac{4}{t})$
聯(lián)立$\left\{\begin{array}{l}x=ty+2\\{y^2}=8x\end{array}\right.$,消x可得y2-8ty-16=0,利用韋達(dá)定理,通過a>2,推出$(x+2,{y_1}+\frac{4}{t})=λ(2-{x_1},-{y_1})$,$λ=-1-\frac{4}{{t{y_1}}}$,同理可得$μ=-1-\frac{4}{{t{y_2}}}$,然后化簡即可.
解答 解:(1)設(shè)P(x,y),則Q(-2,y),
所以$\overrightarrow{QP}=(x+2,0),\overrightarrow{QF}=(4,-y),\overrightarrow{FP}=(x-2,y),\overrightarrow{FQ}=(-4,y)$,
由$\overrightarrow{QP}•\overrightarrow{QF}=\overrightarrow{FP}•\overrightarrow{FQ}$可得,4(x+2)=-4(x-2)+y2,
整理可得:y2=8x.
(2)由題意可知,直線AB的斜率存在且不為0,可設(shè)直線方程為x=ty+2,
A(x1,y1),B(x2,y2),$M(-2,-\frac{4}{t})$
聯(lián)立$\left\{\begin{array}{l}x=ty+2\\{y^2}=8x\end{array}\right.$,消x可得y2-8ty-16=0,
所以y1+y2=8t,y1y2=-16.
又a>2,即$(x+2,{y_1}+\frac{4}{t})=λ(2-{x_1},-{y_1})$,${y_1}+\frac{4}{t}=-λ{(lán)y_1}$,
得$λ=-1-\frac{4}{{t{y_1}}}$,同理可得$μ=-1-\frac{4}{{t{y_2}}}$,
所以$λ+μ=-2-\frac{4}{t}({\frac{1}{y_1}+\frac{1}{y_2}})=-2-\frac{4}{t}({\frac{{{y_1}+{y_2}}}{{{y_1}{y_2}}}})=-2-\frac{4}{t}•\frac{8t}{-16}$=0.
點(diǎn)評(píng) 本題考查直線與拋物線的位置關(guān)系的綜合應(yīng)用,軌跡方程的求法,考查轉(zhuǎn)化思想設(shè)而不求的應(yīng)用,考查計(jì)算能力.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | g(x)=x2 | B. | $g(x)=\frac{1}{x}$ | C. | g(x)=x3 | D. | $g(x)={x^{\frac{1}{2}}}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 不存在x0∈R,$x_0^2+{x_0}+1≥0$ | B. | ?x0∈R,$x_0^2+{x_0}+1≥0$ | ||
C. | ?x∈R,x2+x+1<0 | D. | ?x∈R,x2+x+1≥0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {x|0<x≤2} | B. | {x|-1<x≤2} | C. | {x|x>-1} | D. | R |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {1,2} | B. | {2,3} | C. | {1,2,3} | D. | {0,1,2,3} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com