8.已知函數(shù)f(x)=loga(x-$\sqrt{2}$+1)+2$\sqrt{2}$(a>0,a≠1)的圖象經(jīng)過定點P,且點P在冪函數(shù)g(x)的圖象上,則g(x)的表達式為(  )
A.g(x)=x2B.$g(x)=\frac{1}{x}$C.g(x)=x3D.$g(x)={x^{\frac{1}{2}}}$

分析 由題意求得定點P的坐標,根據(jù)點P在冪函數(shù)f(x)的圖象上,設(shè)g(x)=xn,求得n的值,可得 g(x)的解析式即可.

解答 解:函數(shù)y=loga(x-$\sqrt{2}$+1)+2$\sqrt{2}$(a>0,a≠1)的圖象過定點P($\sqrt{2}$,2$\sqrt{2}$),
∵點P在冪函數(shù)f(x)的圖象上,設(shè)g(x)=xn,則2$\sqrt{2}$=$\sqrt{2}$n,
∴n=3,g(x)=x3,
故選:C.

點評 本題主要考查對數(shù)函數(shù)的單調(diào)性和特殊點,用待定系數(shù)法求函數(shù)的解析式,屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

18.若f(x)=$\frac{e^x}{x}$,f'(x)為f(x)的導函數(shù),則f'(x)=( 。
A.f'(x)=$-\frac{e^x}{x}$B.f'(x)=$\frac{{x{e^x}-{e^x}}}{x^2}$C.f'(x)=$\frac{{x{e^x}+{e^x}}}{x^2}$D.f'(x)=$\frac{{x{e^x}-{e^x}}}{x}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.已知圓的圓心在曲線y2=x上,且與直線x+2y+6=0相切,當圓的面積最小時,其標準方程為(x-1)2+(y+1)2=5.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.已知$\overrightarrow{a}$,$\overrightarrow$是兩個單位向量.
(Ⅰ)若|$\overrightarrow{a}$-2$\overrightarrow$|=2,試求|$\overrightarrow{a}$-$\overrightarrow$|的值;
(Ⅱ)若$\overrightarrow{a}$,$\overrightarrow$的夾角為60°,試求向量$\overrightarrow{m}$=$\overrightarrow{a}$+$\overrightarrow$與$\overrightarrow{n}$=$\overrightarrow{a}$-3$\overrightarrow$的夾角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.$sin\frac{11π}{3}$的值為( 。
A.$-\frac{{\sqrt{3}}}{2}$B.$-\frac{1}{2}$C.$\frac{{\sqrt{3}}}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.已知集合A={x|x2-2x-3<0},B={x|2a-1<x<a+1},a∈R.
(Ⅰ)若B⊆A,求實數(shù)a的取值范圍;
(Ⅱ)設(shè)函數(shù)$f(x)=4sin(2x+\frac{π}{3})+1$,若實數(shù)x0滿足f(x0)∈A,求實數(shù)x0取值的集合.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.已知函數(shù)f(x)=4sin(x-$\frac{π}{3}$)cosx+$\sqrt{3}$.
(Ⅰ)求函數(shù)f(x)的最小正周期和單調(diào)遞增區(qū)間;
(Ⅱ)若函數(shù)g(x)=f(x)-m所在[0,$\frac{π}{2}$]勻上有兩個不同的零點x1,x2,求實數(shù)m的取值范圍,并計算tan(x1+x2)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.已知等差數(shù)列{an}中,a1=3,a2+a5=11.
(Ⅰ)求數(shù)列{an}的通項公式an;
(Ⅱ)若cn=2${\;}^{{a}_{n}-2}$+n,求數(shù)列{cn}的前10項和S10

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.在直角坐標xOy平面內(nèi),已知點F(2,0),直線l:x=-2,P為平面上的動點,過P作直線l的垂線,垂足為點Q,且$\overrightarrow{OP}•\overrightarrow{OF}=\overrightarrow{FP}•\overrightarrow{FQ}$.
(1)求動點P的軌跡C的方程;
(2)過點F的直線交軌跡C于A,B兩點,交直線l于點M,已知$\overrightarrow{MA}=λ\overrightarrow{AF},\overrightarrow{MB}=μ\overrightarrow{BF}$,試判斷λ+μ是否為定值?若是,求出該定值;若不是,請說明理由.

查看答案和解析>>

同步練習冊答案