5.化簡(jiǎn):$\frac{1-cosθ-sinθ}{1+cosθ-sinθ}$=-tan$\frac{θ}{2}$.

分析 利用利用二倍角公式化簡(jiǎn)所給的式子,可得結(jié)果.

解答 解:$\frac{1-cosθ-sinθ}{1+cosθ-sinθ}$=$\frac{1-(1-{2sin}^{2}\frac{θ}{2})-2sin\frac{θ}{2}cos\frac{θ}{2}}{1+{2cos}^{2}\frac{θ}{2}-1-2sin\frac{θ}{2}cos\frac{θ}{2}}$ 
=$\frac{2sin\frac{θ}{2}(sin\frac{θ}{2}-cos\frac{θ}{2})}{2cos\frac{θ}{2}(cos\frac{θ}{2}-sin\frac{θ}{2})}$=-tan$\frac{θ}{2}$,
故答案為:-tan$\frac{θ}{2}$.

點(diǎn)評(píng) 本題主要考查利用二倍角公式進(jìn)行化簡(jiǎn)求值,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.設(shè)i為虛數(shù)單位,n為正整數(shù),θ∈[0,2π).
(1)用數(shù)學(xué)歸納法證明:(cosθ+isinθ)n=cosnθ+isinnθ;
(2)已知$z=\sqrt{3}-i$,試?yán)茫?)的結(jié)論計(jì)算z10

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,若公差d=2,a5=10,則S10的值是110.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知函數(shù)滿足一下兩個(gè)條件:①任意x1,x2∈(0,+∞),且x1≠x2時(shí),(x1-x2)[f(x1)-f(x2)]<0;②對(duì)定義域內(nèi)任意x有f(x)+f(-x)=0,則符合條件的函數(shù)是( 。
A.f(x)=2xB.f(x)=1-|x|C.$f(x)=\frac{1}{x}-x$D.f(x)=ln(x+1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.對(duì)函數(shù)f(x),在使f(x)≥M成立的所有常數(shù)M中,我們把M的最大值叫做函數(shù)f(x)的下確界.現(xiàn)已知定義在R上的偶函數(shù)f(x)滿足f(1-x)=f(1+x),當(dāng)x∈[0,1]時(shí),f(x)=-3x2+2,則f(x)的下確界為(  )
A.2B.1C.-2D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知x≥0,求證:x≥sinx.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知函數(shù)f(x)=exsinx-cosx,g(x)=xcosx-$\sqrt{2}$ex,(其中e是自然對(duì)數(shù)的底數(shù)).
(1)?x1∈[0,$\frac{π}{2}$],?x2∈[0,$\frac{π}{2}$]使得不等式f(x1)+g(x2)≥m成立,試求實(shí)數(shù)m的取值范圍;
(2)若x>-1,求證:f(x)-g(x)>0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.設(shè)集合M={-1,1},N={x|$\frac{1}{x}$<2},則下列結(jié)論正確的是( 。
A.N⊆MB.M⊆NC.M∩N=ND.M∩N={1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.設(shè)偶函數(shù)y=2sin(ωx+φ)(ω>0,0<φ<π)的圖象與直線y=2的某兩個(gè)交點(diǎn)的橫坐標(biāo)分別為x1,x2,若|x2-x1||的最小值為π,則該函數(shù)在下列哪個(gè)區(qū)間上單調(diào)遞增(  )
A.(0,$\frac{π}{2}$)B.(-$\frac{π}{4}$,$\frac{π}{4}$)C.(-$\frac{π}{2}$,-$\frac{π}{4}$)D.($\frac{π}{4}$,$\frac{3π}{4}$)

查看答案和解析>>

同步練習(xí)冊(cè)答案