分析 求出兩個圓的圓心和半徑,根據兩圓外離得到半徑和圓心距之間的關系進行求解即可.
解答 解:圓C:x2+y2-2x-m2+2m+4=0得標準方程為(x-1)2+y2=m2-2m-3,
則圓心C為(1,0),半徑r=$\sqrt{{m}^{2}-2m-3}$,(m2-2m-3>0),
則圓(x+1)2+(y-4)2=5的圓心A(-1,4),半徑R=$\sqrt{5}$,
∵圓(x+1)2+(y-4)2=5與圓x2+y2-2x-m2+2m+4=0外離,
∴|AC|>r+R,
即$\sqrt{(-1-1)^{2}+{4}^{2}}$>$\sqrt{5}$+$\sqrt{{m}^{2}-2m-3}$,(m2-2m-3>0),
即$\sqrt{(-1-1)^{2}+{4}^{2}}$>$\sqrt{5}$+$\sqrt{{m}^{2}-2m-3}$,(m2-2m-3>0),
即2$\sqrt{5}$>$\sqrt{5}$+$\sqrt{{m}^{2}-2m-3}$,
即$\sqrt{5}$>$\sqrt{{m}^{2}-2m-3}$,
即m2-2m-3<5,
即m2-2m-8<0,
由$\left\{\begin{array}{l}{{m}^{2}-2m-8<0}\\{{m}^{2}-2m-3>0}\end{array}\right.$,
得$\left\{\begin{array}{l}{-2<m<4}\\{m>3或m<-1}\end{array}\right.$,即-2<m<-1或3<m<4,
故答案為:-2<m<-1或3<m<4.
點評 本題主要考查圓與圓的位置關系的應用,求出兩圓的圓心和半徑,結合兩圓相離的關系建立不等式是解決本題的關鍵.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\frac{1}{7}$ | B. | $\frac{1}{6}$ | C. | $\frac{1}{8}$ | D. | $\frac{1}{9}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | [1,5] | B. | [2,5] | C. | [-2,2] | D. | [5,9] |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\frac{4}{9}$ | B. | $\frac{5}{9}$ | C. | $\frac{10}{9}$ | D. | $\frac{11}{9}$ |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com