17.已知定義在區(qū)間[0,2]上的兩個函數(shù)f(x)和g(x),其中f(x)=x2-2ax+4(a≥1),g(x)=ln(x+1)-ln3+$\frac{4}{3}$.
(1)求函數(shù)y=f(x)的最小值m(a);
(2)若對任意x1、x2∈[0,2],f(x2)>g(x1)恒成立,求a的取值范圍.

分析 (1)將f(x)配方,通過討論a的范圍,求出m(a)的解析式即可;
(2)問題轉(zhuǎn)化為f(x2min>g(x1max,根據(jù)函數(shù)的單調(diào)性得到關(guān)于a的不等式組,解出即可.

解答 解:(1)由f(x)=x2-2ax+4=(x-a)2+4-a2,
當(dāng)1≤a<2時(shí),m(a)=f(a)=4-a2;
當(dāng)a≥2時(shí),f(x)在[0,2]上遞減,
故m(a)=f(2)=8-4a.
∴m(a)=$\left\{\begin{array}{l}{4{-a}^{2},1≤a<2}\\{8-4a,a≥2}\end{array}\right.$;
(2)由g(x)=ln(x+1)-ln3+$\frac{4}{3}$,
得g(x)在區(qū)間[0,2]上單調(diào)遞增,
故當(dāng)x∈[0,2]時(shí),g(x)∈[$\frac{4}{3}$-ln3,$\frac{4}{3}$].
由題設(shè),得f(x2min>g(x1max,
故$\left\{\begin{array}{l}{1≤a<2}\\{4{-a}^{2}>\frac{4}{3}}\end{array}\right.$或$\left\{\begin{array}{l}{a≥2}\\{8-4a>\frac{4}{3}}\end{array}\right.$,
解得:1≤a<$\frac{2\sqrt{6}}{3}$.

點(diǎn)評 本題考查了二次函數(shù)的性質(zhì),考查函數(shù)的單調(diào)性、最值問題,是一道中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左焦點(diǎn)F(-1,0),過點(diǎn)F作與x軸垂直的直線與橢圓交于M,N兩點(diǎn),且|MN|=3.
(1)求橢圓C的方程;
(2)過點(diǎn)F(-1,0)的直線交橢圓于A,B兩點(diǎn),線段AB的中點(diǎn)為G,AB的中垂線與x軸和y軸分別交于D,E兩點(diǎn),記△GFD的面積為S1,△OED的面積為S2,若λ=$\frac{S_1}{S_2}$,求λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.設(shè)i為虛數(shù)單位,復(fù)數(shù)z滿足$\frac{2i}{z}=1-i$,則復(fù)數(shù)z等于( 。
A.-1-iB.1-iC.-1+iD.1+i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.設(shè)函數(shù)f(x)=|x+2|+|x-2|,x∈R,不等式f(x)≥6的解集為M.
(Ⅰ) 求M
(Ⅱ) 當(dāng)a,b∈M時(shí),求證:$\sqrt{3}|a+b|<|ab+3|$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.某年級先后舉辦了數(shù)學(xué)、音樂講座,其中聽數(shù)學(xué)講座43人,聽音樂講座34人,還有15人同時(shí)聽了數(shù)學(xué)和音樂,則聽講座的人數(shù)為62人.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知集合M={a2,0},N={1,a,2},且M∩N={1},那么M∪N的子集有16個.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.三棱柱ABC-A1B1C1中,若三棱錐A1-ABC的體積為9$\sqrt{3}$,則四棱錐A1-B1BCC1的體積為( 。
A.$18\sqrt{3}$B.$24\sqrt{3}$C.18D.24

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.下面給出了四個條件:
①空間三個點(diǎn);
②一條直線和一個點(diǎn);
③和直線a都相交的兩條直線;
④兩兩相交的三條直線.
其中,能確定一個平面的條件有( 。
A.0個B.1個C.2個D.3個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)$f(x)=ln({ax+\frac{1}{2}})+\frac{2}{2x+1}({x>0})$.
(Ⅰ)若a>0,且f(x)單調(diào)遞增,求實(shí)數(shù)a的取值范圍;
(Ⅱ)是否存在實(shí)數(shù)a,使f(x)的最小值為1,若存在,求出實(shí)數(shù)a的值,若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案