分析 (Ⅰ)根據(jù)函數(shù)奇偶性的定義得到2k+1=0,求出k的值即可;(Ⅱ)根據(jù)函數(shù)單調(diào)性的定義判斷即可.
解答 解:(Ⅰ)∵函數(shù)F(x)=log2(2x+1)+kx(k為常數(shù))是偶函數(shù),
∴f(-x)=f(x),即 log2( 2-x+1)-kx=log2( 2x+1)+kx,
即log2( 2x+1)-x-kx=log2( 2x+1)+kx,可得(2k+1)x=0,
∴2k+1=0,∴k=-$\frac{1}{2}$;
(Ⅱ)∵f(x)=log2(x+1),g(x)=ex在(-1,+∞)遞增,
∴h(x)=f(x)+g(x)在其定義域上單調(diào)遞增,
不妨設(shè)-1<x1<x2,
則h(x1)-h(x2)=log2(x1+1)+${e}^{{x}_{1}}$-log2(x2+1)-${e}^{{x}_{2}}$,
=log2$\frac{{x}_{1}+1}{{x}_{2}+1}$+(${e}^{{x}_{1}}$-${e}^{{x}_{2}}$)
∵x1<x2,
∴$\frac{{x}_{1}+1}{{x}_{2}+1}$<1,${e}^{{x}_{1}}$-${e}^{{x}_{2}}$<0,
故h(x1)-h(x2)<0,
故h(x)在(-1,+∞)遞增.
點(diǎn)評(píng) 本題考查了函數(shù)的單調(diào)性和奇偶性問題,考查對(duì)數(shù)函數(shù)以及指數(shù)函數(shù)的性質(zhì),是一道中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2017屆江西南昌市新課標(biāo)高三一輪復(fù)習(xí)訓(xùn)練五數(shù)學(xué)試卷(解析版) 題型:填空題
在中,,則 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{{2\sqrt{3}}}{3}$ | B. | -3 | C. | 1 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 充分而不必要條件 | B. | 必要而不充分條件 | ||
C. | 充要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2017屆湖南長(zhǎng)沙長(zhǎng)郡中學(xué)高三上周測(cè)十二數(shù)學(xué)(理)試卷(解析版) 題型:解答題
選修4-1:幾何證明選講
如圖,已知為圓的直徑,,是圓上的兩個(gè)點(diǎn),是劣弧的中點(diǎn),⊥于,交于,交于.
(1)求證:;
(2)求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{2}{3}$ | B. | $\frac{3}{5}$ | C. | $\frac{4}{7}$ | D. | $\frac{5}{9}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 4 | B. | $-\frac{1}{3}$ | C. | $\frac{3}{4}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com