【題目】如圖所示,橢圓離心率為,、是橢圓C的短軸端點,且到焦點的距離為,點M在橢圓C上運動,且點M不與、重合,點N滿足.
(1)求橢圓C的方程;
(2)求四邊形面積的最大值.
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓為其左右焦點,為其上下頂點,四邊形的面積為.點為橢圓上任意一點,以為圓心的圓(記為圓)總經(jīng)過坐標原點.
(1)求橢圓的長軸的最小值,并確定此時橢圓的方程;
(2)對于(1)中確定的橢圓,若給定圓,則圓和圓的公共弦的長是否為定值?如果是,求的值;如果不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】眾所周知,城市公交車的數(shù)量太多會造成資源的浪費,太少又難以滿足乘客的需求,為此,某市公交公司在某站臺的50名候車乘客中隨機抽取10名,統(tǒng)計了他們的候車時間(單位:分鐘),得到下表.
候車時間 | 人數(shù) |
1 | |
4 | |
2 | |
2 | |
1 |
(1)估計這10名乘客的平均候車時間(同一組中的每個數(shù)據(jù)可用該組區(qū)間的中點值代替);
(2)估計這50名乘客的候車時間少于10分鐘的人數(shù).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知一個數(shù)列的各項是1和2,首項是1,且在第個1和第個1之間有個2,即1,2,1,2,2,1,2,2,2,2,1,2,2,2,2,2,2,2,2,1…,則此數(shù)列的前2017項的和______.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】求滿足下列條件的雙曲線的標準方程:
(1)一條漸近線方程為,且與橢圓有相同的焦點;
(2)經(jīng)過點,且與雙曲線有共同的漸近線.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,有一塊半徑為20米,圓心角的扇形展示臺,展示臺分成了四個區(qū)域:三角形,弓形,扇形和扇形(其中).某次菊花展依次在這四個區(qū)域擺放:泥金香、紫龍臥雪、朱砂紅霜、朱砂紅霜.預計這三種菊花展示帶來的日效益分別是:泥金香50元/米,紫龍臥雪30元/米,朱砂紅霜40元/米.
(1)設,試建立日效益總量關于的函數(shù)關系式;
(2)試探求為何值時,日效益總量達到最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列判斷中正確的是( )
A.在中,“”的充要條件是“,,成等差數(shù)列”
B.“”是“”的充分不必要條件
C.命題:“,使得”,則的否定:“,都有”
D.若平面內(nèi)一動點到定點的距離等于它到定直線的距離,則該動點的軌跡是一條拋物線
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com