20.某醫(yī)院用甲、乙兩種原材料為手術(shù)后病人配制營養(yǎng)餐,甲種原料每克含蛋白質(zhì)5個單位和維生素C 10個單位,售價2元;乙種原料每克含蛋白質(zhì)6個單位和維生素C 20個單位,售價3元;若病人每餐至少需蛋白質(zhì)50個單位、維生素C 140個單位,在滿足營養(yǎng)要求的情況下最省的費用為23.

分析 設(shè)每盒盒飯需要甲、乙原料分別為x(克),y(克),由已知我們可以給出x、y滿足滿足的條件,即約束條件,進行畫出可行域,再使用角點法,即可求出目標(biāo)函數(shù)S=2x+3y的最小值.

解答 解:設(shè)每盒盒飯需要甲、乙原料分別為x(克),y(克),
所需費用為S=2x+3y,
且x、y滿足$\left\{\begin{array}{l}{x≥0}\\{y≥0}\\{5x+6y≥50}\\{10x+20y≥140}\end{array}\right.$.
由圖可知,直線s=2x+3y過A(4,5)時,s最小,
即S最小=2×4+3×5=23.
故甲、乙原料應(yīng)該分別使用4,5時,才能既滿足營養(yǎng),
又使病人所需費用最省,最省的費用為23.
故答案為:23.

點評 用圖解法解決線性規(guī)劃問題時,分析題目的已知條件,找出約束條件和目標(biāo)函數(shù)是關(guān)鍵,可先將題目中的量分類、列出表格,理清頭緒,然后列出不等式組(方程組)尋求約束條件,并就題目所述找出目標(biāo)函數(shù).然后將可行域各角點的值一一代入,最后比較,即可得到目標(biāo)函數(shù)的最優(yōu)解,該題是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.在直角坐標(biāo)系xOy中,直線l的參數(shù)方程為$\left\{{\begin{array}{l}{x=1-\frac{{\sqrt{2}}}{2}t}\\{y=4-\frac{{\sqrt{2}}}{2}t}\end{array}}\right.$(t為參數(shù)),再以原點為極點,以x正半軸為極軸建立極坐標(biāo)系,并使得它與直角坐標(biāo)系有相同的長度單位,在該極坐標(biāo)系中圓C的方程為ρ=-4cosθ.
(1)求圓C的直角坐標(biāo)方程;
(2)設(shè)圓C與直線l交于點A、B,若點M的坐標(biāo)為(-2,1),求|MA|•|MB|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.如果函數(shù)y=f(x+1)是偶函數(shù),那么函數(shù)y=f(x)的圖象關(guān)于直線x=1對稱.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.在△ABC中,角A、B、C的對邊分別為a、b、c,則以下結(jié)論錯誤的為( 。
A.若$\frac{sinA}{a}=\frac{cosB}=\frac{cosC}{c}$,則A=90°
B.$\frac{a}{sinA}=\frac{b+c}{sinB+sinC}$
C.若sinA>sinB,則A>B;反之,若A>B,則sinA>sinB
D.若sin2A=sin2B,則a=b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.三條平行直線最多能確定的平面?zhèn)數(shù)為3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.定義在(-1,1)上的函數(shù)f(x)=x+sinx,如果f(1-a)+f(1-a2)>0,那么能否確定a的取值范圍?試說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.一艘客輪自北向南航行,上午8時在燈塔P的北偏東15°位置,且距離燈塔34海里,下午2時在燈塔P的東南方向,則這只船航行的速度為$\frac{17\sqrt{6}}{6}$海里/小時.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.若向量$\overrightarrow{a}$=(1,x,2),$\overrightarrow$=(2,-1,y),$\overrightarrow{a}$∥$\overrightarrow$,則實數(shù)2x+y的值為(  )
A.5B.4C.3D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.計算(5-5i)+(-2-i)-(3+4i)=-10i.

查看答案和解析>>

同步練習(xí)冊答案