分析 根據(jù)雙曲線的性質(zhì)可知:設(shè)直線F1A的方程為:$y=\frac{c}(x+c)$,漸近線方程為$y=\frac{a}x$,聯(lián)立求得B坐標(biāo),$\overrightarrow{FA}=(\sqrt{2}-1)\overrightarrow{AB}$,整理得:$c=(\sqrt{2}-1)\frac{ac}{c-a}$,求得$c=\sqrt{2}a$,由離心率公式可知:e=$\frac{c}{a}$=$\sqrt{2}$.
解答 解:由雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$,A(0,b),F(xiàn)1(-c,0),
過點(diǎn)F、A的直線方程的斜率為k=$\frac{a}$,
∴直線F1A的方程為:$y=\frac{c}(x+c)$①,
雙曲線的一條漸近線方程為$y=\frac{a}x$②,
聯(lián)立$\left\{\begin{array}{l}{y=\frac{c}(x+c)}\\{y=\frac{a}x}\end{array}\right.$,解得交點(diǎn)$B(\frac{ac}{c-a},\frac{bc}{c-a})$,
由$\overrightarrow{FA}=(\sqrt{2}-1)\overrightarrow{AB}$,解得$c=(\sqrt{2}-1)\frac{ac}{c-a}$,
整理得:$c=\sqrt{2}a$,
e=$\frac{c}{a}$=$\sqrt{2}$,
故答案為:$\sqrt{2}$.
點(diǎn)評 本題考查雙曲線的方程及簡單幾何性質(zhì),考查向量的共線定理,考查計(jì)算能力,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | y=|x-1| | B. | y=x${\;}^{\frac{1}{2}}$ | C. | y=$\frac{1}{x}$ | D. | y=2x2-x+3 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com