4.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0),且圓M:x2+y2-$\frac{3}{2}$x-1=0過橢圓C的上、下、右三個(gè)頂點(diǎn).
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程和離心率;
(Ⅱ)將橢圓C的橫坐標(biāo)變?yōu)樵瓉?lái)的$\frac{\sqrt{2}}{2}$倍,縱坐標(biāo)不變.得到橢圓C′的方程,已知直線l與橢圓C′只有1個(gè)交點(diǎn),探究.是否存在兩個(gè)定點(diǎn)P(x1,0)、Q(x2,0),且x1<x2,使得P,Q到直線l的距離之積為1,如果存在,求出這兩個(gè)定點(diǎn)的坐標(biāo),如果不存在,說(shuō)明理由.

分析 (Ⅰ)由圓的方程,求得與x和y軸的交點(diǎn)坐標(biāo),即可求得a和b的值,求得橢圓方程;
(Ⅱ)由(Ⅰ)即可求得橢圓方程,分類討論,利用直線l與橢圓C有只有一個(gè)公共點(diǎn),確定k,p的關(guān)系,設(shè)在x軸上存在兩點(diǎn)(s,0),(t,0),使其到直線l的距離之積為1,建立方程,即可求得結(jié)論.

解答 解:(Ⅰ)由圓M:x2+y2-$\frac{3}{2}$x-1=0,當(dāng)x=0時(shí),y=±1,
當(dāng)y=0,x=2或x=-$\frac{1}{2}$,
由橢圓的焦點(diǎn)在x軸上,則橢圓的右頂點(diǎn)(2,0),上頂點(diǎn)(1,0),下頂點(diǎn)(-1,0),
則a=2,b=1,c=$\sqrt{3}$
∴橢圓的標(biāo)準(zhǔn)方程:$\frac{{x}^{2}}{4}+{y}^{2}=1$,離心率e=$\frac{c}{a}$=$\frac{\sqrt{3}}{2}$;
(Ⅱ)橢圓C的橫坐標(biāo)變?yōu)樵瓉?lái)的$\frac{\sqrt{2}}{2}$倍,則a=$\frac{\sqrt{2}}{2}$×2=$\sqrt{2}$,
則橢圓的標(biāo)準(zhǔn)方程:$\frac{{x}^{2}}{2}+{y}^{2}=1$;
①當(dāng)直線l斜率存在時(shí),設(shè)直線l方程為y=kx+p,
代入橢圓方程得(1+2k2)x2+4kpx+2p2-2=0.
因?yàn)橹本l與橢圓C有只有一個(gè)公共點(diǎn),
所以△=16k2p2-4(1+2k2)(2p2-2)=8(1+2k2-p2)=0,
即1+2k2=p2
設(shè)在x軸上存在兩點(diǎn)(s,0),(t,0),使其到直線l的距離之積為1,
則$\frac{丨ks+p丨}{\sqrt{1+{k}^{2}}}$•$\frac{丨kt+p丨}{\sqrt{1+{k}^{2}}}$=1,
即(st+1)k+p(s+t)=0(*),或(st+3)k2+(s+t)kp+2=0 (**).
由(*)恒成立,得$\left\{\begin{array}{l}{st+1=0}\\{s+t=0}\end{array}\right.$得$\left\{\begin{array}{l}{s=1}\\{t=-1}\end{array}\right.$,或$\left\{\begin{array}{l}{s=-1}\\{t=1}\end{array}\right.$,
而(**)不恒成立.
②當(dāng)直線l斜率不存在時(shí),直線方程為x=±$\sqrt{2}$時(shí),
定點(diǎn)P(-1,0)、Q(1,0)到直線l的距離之積d1?d2=($\sqrt{2}$-1)($\sqrt{2}$+1)=1.
綜上,存在兩個(gè)定點(diǎn)(1,0),(-1,0),使其到直線l 的距離之積為定值1.

點(diǎn)評(píng) 本題考查橢圓的標(biāo)準(zhǔn)方程,考查直線與橢圓的位置關(guān)系,考查存在性問題的研究,考查學(xué)生的計(jì)算能力,同時(shí)考查學(xué)生分析解決問題的能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知函數(shù)f(x)=ax3-x+1的圖象在點(diǎn)(1,f(1))處的切線過點(diǎn)(2,3).
(1)求a的值;
(2)求函數(shù)f(x)的極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.若函數(shù)f(x)=e-x+ax,x∈R有兩個(gè)零點(diǎn),則實(shí)數(shù)a的取值范圍為( 。
A.1<a<eB.a>eC.-e<a<-1D.a<-e

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.將點(diǎn)的直角坐標(biāo)($\frac{π}{2}$,-$\frac{\sqrt{3}π}{2}$)化為極坐標(biāo)(ρ>0,θ∈[0,2π))為($π,\frac{5π}{3}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.某廠家為了解銷售轎車臺(tái)數(shù)與廣告宣傳費(fèi)之間的關(guān)系,得到如表統(tǒng)計(jì)數(shù)據(jù)表:根據(jù)數(shù)據(jù)表可得回歸直線方程$\widehaty=\widehatbx+\widehata$,其中$\widehatb=2.4$,$\widehata=\overline y-\widehatb\overline x$,據(jù)此模型預(yù)測(cè)廣告費(fèi)用為9萬(wàn)元時(shí),銷售轎車臺(tái)數(shù)為( 。
廣告費(fèi)用x(萬(wàn)元)23456
銷售轎車y(臺(tái)數(shù))3461012
A.17B.18C.19D.20

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.已知P是ABC所在平面內(nèi)一點(diǎn),$\overrightarrow{PB}$+$\overrightarrow{PC}$+$\frac{3}{5}$$\overrightarrow{PA}$=$\overrightarrow{0}$,現(xiàn)將一粒黃豆隨機(jī)撒在ABC內(nèi),則黃豆落在PBC內(nèi)的概率是( 。
A.$\frac{3}{13}$B.$\frac{2}{3}$C.$\frac{3}{10}$D.$\frac{10}{13}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.已知數(shù)列n∈N*滿足bn+1=$\frac{1}{2}{b_n}+\frac{1}{4},{b_1}=\frac{7}{2},{T_n}$為{bn}的前n項(xiàng)和.如果對(duì)于任意n∈N*,不等式$\frac{12k}{{12+n-2{T_n}}}$≥2n-7恒成立,則實(shí)數(shù)k的取值范圍為[$\frac{3}{32}$,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.將f(x)=cosωx(ω>0),的圖象向右平移$\frac{π}{3}$個(gè)單位長(zhǎng)度,得到函數(shù)y=g(x)的圖象.若y=g(x)是奇函數(shù),則ω的最小值為( 。
A.6B.$\frac{9}{2}$C.$\frac{3}{2}$D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.在△ABC中,b=2,B=30°,c=2$\sqrt{3}$,求a和A,C.

查看答案和解析>>

同步練習(xí)冊(cè)答案