【題目】已知圓的圓心為,為圓上任意一點,,線段的垂直平分線交于點.

1)求點的軌跡方程;

2)記點的軌跡為曲線,點,.若點為直線上一動點,且不在軸上,直線分別交曲線、兩點,求四邊形面積的最大值.

【答案】(1)(2)

【解析】

1)線段的垂直平分線交于點,則.所以,即點在以、為焦點,長軸長為4的橢圓上,即可求出軌跡方程.

2)設(shè),由于橢圓關(guān)于軸對稱,所以不妨設(shè)則直線的方程為:,直線的方程為:.設(shè),,聯(lián)立直線方程與橢圓方程,即可求出的坐標,而

再用基本不等式的性質(zhì)及函數(shù)的性質(zhì)求出面積最值.

解:(1)由題意,線段的垂直平分線交于點,則.

所以

即點在以、為焦點,長軸長為4的橢圓上,

所以,,

故點的軌跡方程為:;

2)設(shè),由于橢圓關(guān)于軸對稱,所以不妨設(shè)

則直線的方程為:,直線的方程為:.

設(shè)

,則,

,于是.

同理可得:,

所以

設(shè),則,則

單調(diào)遞減,故.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】某鮮花店每天制作、兩種鮮花共束,每束鮮花的成本為元,售價元,如果當天賣不完,剩下的鮮花作廢品處理.該鮮花店發(fā)現(xiàn)這兩種鮮花每天都有剩余,為此整理了過往100天這兩種鮮花的日銷量(單位:束),得到如下統(tǒng)計數(shù)據(jù):

種鮮花日銷量

48

49

50

51

天數(shù)

25

35

20

20

兩種鮮花日銷量

48

49

50

51

天數(shù)

40

35

15

10

以這100天記錄的各銷量的頻率作為各銷量的概率,假設(shè)這兩種鮮花的日銷量相互獨立.

(1)記該店這兩種鮮花每日的總銷量為束,求的分布列.

(2)鮮花店為了減少浪費,提升利潤,決定調(diào)查每天制作鮮花的量束.以銷售這兩種鮮花的日總利潤的期望值為決策依據(jù),在每天所制鮮花能全部賣完與之中選其一,應選哪個?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知袋中裝有紅球,黑球共7個,若從中任取兩個小球(每個球被取到的可能性相同),其中恰有一個紅球的概率為.

1)求袋中紅球的個數(shù);

2)若袋中紅球比黑球少,從袋中任取三個球,求三個球中恰有一個紅球的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

極坐標系的極點為直角坐標系的原點,極軸為軸的正半軸,兩種坐標系中的長度單位相同,已知曲線的極坐標方程為.

(1)求的直角坐標方程;

(2)直線為參數(shù))與曲線交于兩點,與軸交于,求.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè):實數(shù)滿足,其中;

:實數(shù)滿足.

Ⅰ)若,為真,求實數(shù)的取值范圍;

Ⅱ)若的必要不充分條件,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)集合 ,如果存在的子集,同時滿足如下三個條件:

;

,,兩兩交集為空集;

,則稱集合具有性質(zhì).

(Ⅰ) 已知集合,請判斷集合是否具有性質(zhì),并說明理由;

(Ⅱ)設(shè)集合,求證:具有性質(zhì)的集合有無窮多個.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】經(jīng)觀測,某公路段在某時段內(nèi)的車流量(千輛/小時)與汽車的平均速度(千米/小時)之間有函數(shù)關(guān)系:

1)在該時段內(nèi),當汽車的平均速度為多少時車流量最大?最大車流量為多少?(精確到0.01)

2)為保證在該時段內(nèi)車流量至少為10千輛/小時,則汽車的平均速度應控制在什么范圍內(nèi)?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某精準扶貧幫扶單位,為幫助定點扶貧村真正脫貧,堅持扶貧同扶智相結(jié)合,幫助精準扶貧戶利用互聯(lián)網(wǎng)電商渠道銷售當?shù)靥禺a(chǎn)蘋果.蘋果單果直徑不同單價不同,為了更好的銷售,現(xiàn)從該精準扶貧戶種植的蘋果樹上隨機摘下了50個蘋果測量其直徑,經(jīng)統(tǒng)計,其單果直徑分布在區(qū)間[50,95]內(nèi)(單位:),統(tǒng)計的莖葉圖如圖所示:

(Ⅰ)從單果直徑落在[72,80)的蘋果中隨機抽取3個,求這3個蘋果單果直徑均小于76的概率;

(Ⅱ)以此莖葉圖中單果直徑出現(xiàn)的頻率代表概率.直徑位于[65,90)內(nèi)的蘋果稱為優(yōu)質(zhì)蘋果,對于該精準扶貧戶的這批蘋果,某電商提出兩種收購方案:

方案:所有蘋果均以5元/千克收購;

方案:從這批蘋果中隨機抽取3個蘋果,若都是優(yōu)質(zhì)蘋果,則按6元/干克收購;若有1個非優(yōu)質(zhì)蘋果,則按5元/千克收購;若有2個非優(yōu)質(zhì)蘋果,則按4.5元/千克收購;若有3個非優(yōu)質(zhì)蘋果,則按4元/千克收購.

請你通過計算為該精準扶貧戶推薦收益最好的方案.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】我國古代數(shù)學名著《九章算術(shù)商功》中闡述:“斜解立方,得兩塹堵.斜解塹堵,其一為陽馬,一為鱉臑.陽馬居二,鱉臑居一,不易之率也.合兩鱉臑三而一,驗之以棊,其形露矣.”若稱為“陽馬”的某幾何體的三視圖如圖所示,圖中網(wǎng)格紙上小正方形的邊長為1,對該幾何體有如下描述:

①四個側(cè)面都是直角三角形;

②最長的側(cè)棱長為

③四個側(cè)面中有三個側(cè)面是全等的直角三角形;

④外接球的表面積為24π.

其中正確的描述為____

查看答案和解析>>

同步練習冊答案