5.已知函數(shù)f(x)=x+lg($\sqrt{1+{x}^{2}}$+x)+5,且f(a)=6,則f(-a)=4.

分析 根據(jù)題意,由函數(shù)的解析式可得f(a),f(-a)的表達(dá)式,將f(a)=6代入可得答案.

解答 解:根據(jù)題意,函數(shù)函數(shù)f(x)=x+lg($\sqrt{1+{x}^{2}}$+x)+5,則f(a)=a+lg(a+$\sqrt{1+{a}^{2}}$)+5,①
f(-a)=-a+lg(-a+$\sqrt{1+{a}^{2}}$)+5=-a-lg(a+$\sqrt{1+{a}^{2}}$)+5,②
①+②可得:f(a)+f(-a)=10,
而f(a)=6,
則f(-a)=4,
故答案為:4.

點(diǎn)評(píng) 本題考查函數(shù)的求值,關(guān)鍵利用對(duì)數(shù)的運(yùn)算性質(zhì)進(jìn)行分析,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.已知數(shù)列{an}的前n項(xiàng)和Sn=n2-n(n∈N*),若存在正整數(shù)m,n,滿(mǎn)足am2-4=4(Sn+10),則m+n的值是23.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.下列不等式一定成立的是( 。
A.x2+1≥2|x|(x∈R)B.lg(x2+$\frac{1}{4}$)>lgx(x>0)
C.sinx+$\frac{1}{sinx}$≥2(x≠kπ,k∈Z)D.$\frac{1}{{x}^{2}+1}$<1(x∈R)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.設(shè)x=$\frac{a+2b}{3}$,y=$\frac{2a+b}{3}$.命題p:a≠b;命題q:ab<xy,則命題p是命題q成立的充要條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.設(shè)Sn為等差數(shù)列{an}的前n項(xiàng)和,若a3+a4+a5+a6=36,則S8=72.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.下列函數(shù)中,最小正周期為$\frac{π}{2}$的是( 。
A.y=2sinxcosxB.y=sin(2x+$\frac{π}{2}$)C.y=tan2xD.y=sin2x+cos2x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知log189=a,18b=5,用a、b表示log645.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.設(shè)函數(shù)f(x)=$\frac{1}{3}{x^3}-\frac{1}{2}({a+1}){x^2}$+ax+1.
(1)討論f(x)在其定義域上的單調(diào)性;
(2)當(dāng)x∈[0,1]時(shí),求f(x)的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.為了研究學(xué)生在考試時(shí)做解答題的情況,老師從甲、乙兩個(gè)班級(jí)里各隨機(jī)抽取了五份答卷并對(duì)解答題第16題(滿(mǎn)分13分)的得分進(jìn)行統(tǒng)計(jì),得到對(duì)應(yīng)的甲、乙兩組數(shù)據(jù),其莖葉圖如圖所示,其中x,y∈{0,1,2,3},已知甲組數(shù)據(jù)的中位數(shù)比乙組數(shù)據(jù)的平均數(shù)多$\frac{9}{5}$,則x+y的值為( 。
A.5B.4C.3D.1

查看答案和解析>>

同步練習(xí)冊(cè)答案