【題目】已知函數(shù)的定義域?yàn)?/span>,部分對應(yīng)值如下表,的導(dǎo)函數(shù)的圖象如圖所示,給出關(guān)于的下列命題:
①函數(shù)在處取得極小值;
②函數(shù)在是減函數(shù),在是增函數(shù);
③當(dāng)時(shí),函數(shù)有4個(gè)零點(diǎn);
④如果當(dāng)時(shí),的最大值是2,那么的最小值為0.
其中所有的正確命題是__________(寫出正確命題的序號).
【答案】①③④
【解析】分析:由導(dǎo)函數(shù)的圖象可得函數(shù)的單調(diào)性、極值與最值,進(jìn)而可畫出函數(shù)的圖象得出答案.
詳解:由導(dǎo)函數(shù)的圖象可知:
根據(jù)上述表達(dá)及其已知表格可畫出函數(shù)的圖象:
①函數(shù)在處取得極小值,正確;
②由表格和圖象可知:函數(shù)在是減函數(shù),因此不正確;
③作出函數(shù)y=a,
可知:當(dāng)時(shí),函數(shù)與y=a有四個(gè)交點(diǎn),
因此函數(shù)有4個(gè)零點(diǎn),正確;
④當(dāng)時(shí),函數(shù)單調(diào)遞增,其函數(shù)值由1增加到2.故如果當(dāng)時(shí),的最大值是2,那么的最小值為0,故正確.
故答案為:①③④.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)且時(shí),證明.
(2)令,若時(shí),恒成立,求實(shí)數(shù)的取值范圍;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如果的三個(gè)內(nèi)角的正弦值分別等于的三個(gè)內(nèi)角的余弦值,則下列正確的是( )
A. 與都是銳角三角形
B. 與都是鈍角三角形
C. 是銳角三角形且是鈍角三角形
D. 是鈍角三角形且是銳角三角形
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)是上的增函數(shù).當(dāng)實(shí)數(shù)取最大值時(shí),若存在點(diǎn),使得過點(diǎn)的直線與曲線圍成兩個(gè)封閉圖形,且這兩個(gè)封閉圖形的面積總相等,則點(diǎn)的坐標(biāo)為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2018年2月9-25日,第23屆冬奧會在韓國平昌舉行.4年后,第24 屆冬奧會將在中國北京和張家口舉行.為了宣傳冬奧會,某大學(xué)在平昌冬奧會開幕后的第二天,從全校學(xué)生中隨機(jī)抽取了120名學(xué)生,對是否收看平昌冬奧會開幕式情況進(jìn)行了問卷調(diào)查,統(tǒng)計(jì)數(shù)據(jù)如下:
(1)根據(jù)上表說明,能否有的把握認(rèn)為,收看開幕式與性別有關(guān)?
(2)現(xiàn)從參與問卷調(diào)查且收看了開幕式的學(xué)生中,采用按性別分層抽樣的方法,選取12人參加2022年北京冬奧會志愿者宣傳活動(dòng).若從這12人中隨機(jī)選取3人到校廣播站開展冬奧會及冰雪項(xiàng)目的宣傳介紹,設(shè)選取的3 人中女生人數(shù)為,寫出的分布列,并求.
附:,其中.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從某市統(tǒng)考的學(xué)生數(shù)學(xué)考試卷中隨機(jī)抽查100份數(shù)學(xué)試卷作為樣本,分別統(tǒng)計(jì)出這些試卷總分,由總分得到如下的頻率分別直方圖.
(1)求這100份數(shù)學(xué)試卷成績的中位數(shù);
(2)從總分在和的試卷中隨機(jī)抽取2份試卷,求抽取的2份試卷中至少有一份總分少于65分的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列有關(guān)命題的說法正確的是( )
A. “若x>1,則2x>1”的否命題為真命題
B. “若cosβ=1,則sinβ=0”的逆命題是真命題
C. “若平面向量a,b共線,則a,b方向相同”的逆否命題為假命題
D. 命題“若x>1,則x>a”的逆命題為真命題,則a>0
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某企業(yè)有甲、乙兩個(gè)研發(fā)小組,他們研發(fā)新產(chǎn)品成功的概率分別為 和 .現(xiàn)安排甲組研發(fā)新產(chǎn)品A,乙組研發(fā)新產(chǎn)品B,設(shè)甲、乙兩組的研發(fā)相互獨(dú)立.
(1)求至少有一種新產(chǎn)品研發(fā)成功的概率;
(2)若新產(chǎn)品A研發(fā)成功,預(yù)計(jì)企業(yè)可獲利潤120萬元;若新產(chǎn)品B研發(fā)成功,預(yù)計(jì)企業(yè)可獲利潤100萬元,求該企業(yè)可獲利潤的分布列和數(shù)學(xué)期望.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com