分析 利用空間向量共面定理,列出方程,求解即可.
解答 解:在空間直角坐標(biāo)系中,已知A(3,0,a),B(0,3,-2),C(1,1,-1),若平面ABC過坐標(biāo)原點,
可得$\overrightarrow{OA}$=$λ\overrightarrow{OB}$$+μ\overrightarrow{OC}$,
即:(3,0,a)=λ(0,3,-2)+μ(1,1,-1),
可得$\left\{\begin{array}{l}{3=μ}\\{3λ+μ=0}\\{a=-2λ-μ}\end{array}\right.$,
解得$\left\{\begin{array}{l}{μ=3}\\{λ=-1}\\{a=-1}\end{array}\right.$.
故答案為:-1.
點評 本題考查空間向量共面定理的應(yīng)用,考查轉(zhuǎn)化思想以及計算能力.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{{\sqrt{2}}}{2}$ | B. | $\frac{{\sqrt{15}}}{3}$ | C. | $\sqrt{2}$ | D. | $\frac{{\sqrt{6}}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -2 | B. | 2 | C. | 7 | D. | -2或7 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com