18.已知點(diǎn)P(2,-1).
(1)若一條直線經(jīng)過點(diǎn)P,且原點(diǎn)到直線的距離為2,求該直線的一般式方程;
(2)求過點(diǎn)P且與原點(diǎn)距離最大的直線的一般式方程,并求出最大距離是多少?

分析 (1)當(dāng)l的斜率k不存在時(shí),直接寫出直線方程;當(dāng)l的斜率k存在時(shí),設(shè)l:y+1=k(x-2),即kx-y-2k-1=0.由點(diǎn)到直線的距離公式求得k值,則直線方程可求;
(2)由題意可得過P點(diǎn)與原點(diǎn)O距離最大的直線是過P點(diǎn)且與PO垂直的直線,求出OP所在直線的斜率,進(jìn)一步得到直線l的斜率,得到直線l的方程,再由點(diǎn)到直線的距離公式得最大距離.

解答 解:(1)①當(dāng)l的斜率k不存在時(shí),l的方程為x=2; 
②當(dāng)l的斜率k存在時(shí),設(shè)l:y+1=k(x-2),即kx-y-2k-1=0.
由點(diǎn)到直線距離公式得$\frac{{|{-2k-1}|}}{{\sqrt{1+{k^2}}}}=2$,得l:3x-4y-10=0.
故所求l的方程為:x=2  或  3x-4y-10=0;
(2)由題意可得過P點(diǎn)與原點(diǎn)O距離最大的直線是過P點(diǎn)且與PO垂直的直線,
由l⊥OP,得klkOP=-1,kl=$-\frac{1}{{{k_{op}}}}=2$,
由直線方程的點(diǎn)斜式得y+1=2(x-2),即2x-y-5=0.
即直線2x-y-5=0是過P點(diǎn)且與原點(diǎn)O距離最大的直線,最大距離為 $\frac{{|{-5}|}}{{\sqrt{5}}}=\sqrt{5}$.

點(diǎn)評(píng) 本題考查直線的點(diǎn)斜式方程,考查點(diǎn)到直線的距離公式的應(yīng)用,屬中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知橢圓的標(biāo)準(zhǔn)方程為:$\frac{{x}^{2}}{4{a}^{2}}$+$\frac{{y}^{2}}{3{a}^{2}}$=1(a>0)
(1)當(dāng)a=1時(shí),求橢圓的焦點(diǎn)坐標(biāo)及橢圓的離心率;
(2)過橢圓的右焦點(diǎn)F2的直線與圓C:x2+y2=4a2(常數(shù)a>0)交于A,B兩點(diǎn),求|F2A|•|F2B|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.化簡求值.
(1)${(\frac{1}{4})^{-2}}+{({\frac{1}{{6\sqrt{6}}}})^{{-^{\;}}\frac{1}{3}}}+\frac{{\sqrt{3}+\sqrt{2}}}{{\sqrt{3}-\sqrt{2}}}+\frac{1}{2}•{(1.03)^0}•{(-\sqrt{6})^3}$
(2)(lg2)2+lg20×lg5+log92•log43.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.設(shè)橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$ 的左右焦點(diǎn)分別為F1,F(xiàn)2,點(diǎn)P 在橢圓上運(yùn)動(dòng),$|{{{\overrightarrow{PF}}_1}}|×|{\overrightarrow{P{F_2}}}|$ 的最大值為m,$\overrightarrow{P{F}_{1}}$•$\overrightarrow{P{F}_{2}}$的最小值為n,且m≥2n,則該橢圓的離心率的取值范圍為[$\frac{1}{2}$,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知函數(shù)f(x)是定義在R上的偶函數(shù),且在(-∞,0]上單調(diào)遞減,若f(-1)=0,則不等式f(2x-1)>0解集為( B  )( 。
A.(-6,0)∪(1,3)B.(-∞,0)∪(1,+∞)C.(-∞,1)∪(3,+∞)D.(-∞,-1)∪(3,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知等邊三角形的邊長為a,P是△ABC所在平面上的一點(diǎn),求|PA|2+|PB|2+|PC|2的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知以點(diǎn)C(t,$\frac{2}{t}$)(t∈R且t≠0)為圓心的圓經(jīng)過原點(diǎn)O,且與x軸交于點(diǎn)A,與y軸交于點(diǎn)B.
(1)求證:△AOB的面積為定值.
(2)設(shè)直線2x+y-4=0與圓C交于點(diǎn)M,N,若|OM|=|ON|,求圓C的方程.
(3)在(2)的條件下,設(shè)P,Q分別是直線l:x+y+2=0和圓C上的動(dòng)點(diǎn),求|PB|+|PQ|的最小值及此時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.函數(shù)$f(x)=\left\{\begin{array}{l}0,(x>0)\\ π,(x=0)\\ 1,(x<0)\end{array}\right.$,則f(f(f(π)))=( 。
A.1B.0C.πD.π+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知集合P={y|y=($\frac{1}{2}$)x,x>0},Q={x|y=lg(2x-x2)},則∁RP∩Q=( 。
A.[1,2)B.(1,+∞)C.[2,+∞)D.[1,+∞)

查看答案和解析>>

同步練習(xí)冊(cè)答案