17.已知在△ABC中,內(nèi)角A,B,C對應(yīng)的邊分別為a,b,c,且acosC+ccosA=2bcosB,$b=\sqrt{3}$
(1)求證:角A,B,C成等差數(shù)列;
(2)求△ABC面積的最大值.

分析 (1)利用已知條件以及正弦定理求出B的正弦值,然后求角B的大小,再根據(jù)等差數(shù)列的性質(zhì)可以證明,
(2)由余弦定理可得:3=a2+c2-ac,由基本不等式可得:ac≤3,代入三角形的面積公式即可求出△ABC面積的最大值.

解答 解:(1)證明:由acosC+ccosA=2bcosB以及正弦定理可知,
sinAcosC+sinCcosA=2sinBcosB,
即sin(A+C)=2sinBcosB.
因為A+B+C=π,所以sin(A+C)=sinB≠0,
所以cosB=$\frac{1}{2}$.
∵B∈(0,π)
∴B=$\frac{π}{3}$,
∴A+C=π-B=$\frac{2π}{3}$=2B,
∴角A,B,C成等差數(shù)列,
(2)由余弦定理可得:b2=a2+c2-2accosB,
∴3=a2+c2-ac
∴3≥2ac-ac=ac
∴ac≤3,當(dāng)且僅當(dāng)a=c時取等號,
∴S△ABC=$\frac{1}{2}$acsinB=$\frac{\sqrt{3}}{4}$ac≤$\frac{3\sqrt{3}}{4}$,
∴△ABC面積的最大值為$\frac{3\sqrt{3}}{4}$.

點評 本題考查正弦定理、余弦定理及其應(yīng)用和三角形的面積公式,基本不等式的應(yīng)用,考查學(xué)生運用知識解決問題的能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.在△ABC中,AC=4,BC=6,∠ACB=120°,若$\overrightarrow{AD}$=-2$\overrightarrow{BD}$,則$\overrightarrow{AC}$•$\overrightarrow{CD}$=$\frac{8}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知cosα=$\frac{3}{5}$,cos(α-β)=$\frac{{7\sqrt{2}}}{10}$,且0<β<α<$\frac{π}{2}$,那么β=( 。
A.$\frac{π}{12}$B.$\frac{π}{6}$C.$\frac{π}{4}$D.$\frac{π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.若($\frac{3}{\sqrt{x}}$-$\root{3}{x}$)n的展開式中所有項系數(shù)的絕對值之和為1024,則該展開式中的常數(shù)項是-90.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.現(xiàn)有4名男生、3名女生站成一排照相.(結(jié)果用數(shù)字表示)
(1)女生甲不在排頭,女生乙不在排尾,有多少種不同的站法?
(2)女生不相鄰,有多少種不同的站法?
(3)女生甲要在女生乙的右方,有多少種不同的站法?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知a>0,b>0,$\frac{2}{a}+\frac{1}=\frac{1}{4}$,若不等式2a+b≥4m恒成立,則m的最大值為9.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.若$\overrightarrow{e_1}$,$\overrightarrow{e_2}$是夾角為60o的兩個單位向量,則$\overrightarrow a$=2$\overrightarrow{e_1}$+$\overrightarrow{e_2}$,$\overrightarrow b$=-3$\overrightarrow{e_1}$+2$\overrightarrow{e_2}$夾角為( 。
A.30oB.60oC.120oD.150o

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知函數(shù)$f(x)=\frac{1}{2}{x^2}-alnx+1$在(0,1)內(nèi)有最小值,則a的取值范圍是( 。
A.0≤a<1B.-1<a<1C.0<a<1D.$0<a<\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.在校慶文娛匯演節(jié)目中,高二級有3名男生3名女生站成一列合唱“愛我中華”,恰好有兩位女同學(xué)站在一起的站法一共有( 。
A.216種B.288種C.360種D.432種

查看答案和解析>>

同步練習(xí)冊答案