9.若$\overrightarrow{e_1}$,$\overrightarrow{e_2}$是夾角為60o的兩個單位向量,則$\overrightarrow a$=2$\overrightarrow{e_1}$+$\overrightarrow{e_2}$,$\overrightarrow b$=-3$\overrightarrow{e_1}$+2$\overrightarrow{e_2}$夾角為( 。
A.30oB.60oC.120oD.150o

分析 根據(jù)平面向量是數(shù)量積定義計算$\overrightarrow{{e}_{1}}$•$\overrightarrow{{e}_{2}}$的值,再利用夾角的定義計算cos<$\overrightarrow{a}$,$\overrightarrow$>,從而求出$\overrightarrow{a}$、$\overrightarrow$夾角的大。

解答 解:$\overrightarrow{e_1}$,$\overrightarrow{e_2}$是夾角為60o的兩個單位向量,
∴$\overrightarrow{{e}_{1}}$•$\overrightarrow{{e}_{2}}$=1×1×cos60°=$\frac{1}{2}$;
又$\overrightarrow a$=2$\overrightarrow{e_1}$+$\overrightarrow{e_2}$,$\overrightarrow b$=-3$\overrightarrow{e_1}$+2$\overrightarrow{e_2}$,
∴$\overrightarrow{a}$•$\overrightarrow$=-6${\overrightarrow{{e}_{1}}}^{2}$+$\overrightarrow{{e}_{1}}$•$\overrightarrow{{e}_{2}}$+2${\overrightarrow{{e}_{2}}}^{2}$=-6+$\frac{1}{2}$+2=-$\frac{7}{2}$,
|$\overrightarrow{a}$|=$\sqrt{{(2\overrightarrow{{e}_{1}}+\overrightarrow{{e}_{2}})}^{2}}$=$\sqrt{4+4×\frac{1}{2}+1}$=$\sqrt{7}$
|$\overrightarrow$|=$\sqrt{{(-3\overrightarrow{{e}_{1}}+2\overrightarrow{{e}_{2}})}^{2}}$=$\sqrt{9-12×\frac{1}{2}+4}$=$\sqrt{7}$,
∴cos<$\overrightarrow{a}$,$\overrightarrow$>=$\frac{\overrightarrow{a}•\overrightarrow}{|\overrightarrow{a}|×|\overrightarrow|}$=$\frac{-\frac{7}{2}}{\sqrt{7}×\sqrt{7}}$=-$\frac{1}{2}$,
∴$\overrightarrow{a}$、$\overrightarrow$的夾角為120°.
故選:C.

點評 本題考查了平面向量的數(shù)量積與夾角大小的計算問題,是基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

18.某人準備投資1200萬元辦一所中學,為了考慮社會效益和經(jīng)濟效益,對該地區(qū)教育市場進行調(diào)查,得出一組數(shù)據(jù),列表如下(以班級為單位).
市場調(diào)查表:
班級學生數(shù)配備教師數(shù)硬件建設(shè)費(萬元)教師年薪(萬元)
初中502.0281.2
高中402.5581.6
根據(jù)物價部門的有關(guān)規(guī)定:初中是義務(wù)教育階段,收費標準適當控制,預計除書本費、辦公費外,初中每人每年可收取600元.高中每人每年可收取1500元.因生源和環(huán)境等條件限制,辦學規(guī)模以20至30個班為宜(含20個班與30個),教師實行聘任制.初、高中教育周期均為三年,設(shè)初中編制為x個班,高中編制為y個班,請你合理地安排招生計劃,使年利潤最大.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.已知函數(shù)f(x)=$\frac{1}{2}{x^2}$-2alnx+(a-2)x,a∈R.
(Ⅰ)當a=-1時,求函數(shù)f(x)的極值;
(Ⅱ)當a<0時,討論函數(shù)f(x)單調(diào)性;
(Ⅲ)是否存在實數(shù)a,對任意的m,n∈(0,+∞),且m≠n,有$\frac{f(m)-f(n)}{m-n}$>a恒成立?若存在,求出a的取值范圍;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.已知在△ABC中,內(nèi)角A,B,C對應的邊分別為a,b,c,且acosC+ccosA=2bcosB,$b=\sqrt{3}$
(1)求證:角A,B,C成等差數(shù)列;
(2)求△ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.已知橢圓C:$\frac{{x}^{2}}{3}$+$\frac{{y}^{2}}{2}$=1的左、右焦點分別為F1,F(xiàn)2,直線l1過點F1且垂直于橢圓的長軸,動直線l2垂直于直線l1于點P,線段PF2的垂直平分線與l1的交點的軌跡為曲線C2,若點Q是C2上任意的一點,定點A(4,3),B(1,0),則|QA|+|QB|的最小值為( 。
A.6B.3$\sqrt{3}$C.4D.5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.我國古代數(shù)學有非常高的成就,在很多方面都領(lǐng)先于歐洲數(shù)學.下面數(shù)學名詞中蘊含微積分中“極限思想”的是( 。
A.天元術(shù)B.少廣術(shù)C.衰分術(shù)D.割圓術(shù)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.有一段演繹推理:若直線平行于平面,則這條直線平行于平面內(nèi)所有直線;≠已知直線b∥平面α,直線a?平面α;則直線b∥直線a”下列敘述正確的是( 。
A.該命題是真命題
B.該命題是假命題,因為大前提是錯誤的
C.該命題是假命題,因為小前提是錯誤的
D.該命題是假命題,因為結(jié)論是錯誤的

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.已知不等式組$\left\{\begin{array}{l}x+y≥4\\ x-y≥-2\\ x≤2\end{array}\right.$,表示的平面區(qū)域為D,點O(0,0)、A(1,0),若M是D上的動點,則向量$\overrightarrow{OA}$在向量$\overrightarrow{OM}$方向上的投影的最小值為( 。
A.$\frac{\sqrt{2}}{2}$B.$\frac{\sqrt{5}}{5}$C.$\frac{\sqrt{10}}{10}$D.$\frac{3\sqrt{10}}{10}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.樣本數(shù)據(jù)-2,0,6,3,6的眾數(shù)是6.

查看答案和解析>>

同步練習冊答案