18.對點(diǎn)(x,y)的一次操作變換記為P1(x,y),定義其變換法則為P1(x,y)=(x+y,x-y),且規(guī)定Pn(x,y)=P1(Pn-1(x+y,x-y))(n為大于1的整數(shù)),如P1(1,2)=(3,-1),P2(1,2)=P1(P1(1,2))=P1(3,-1)=(2,4),P3(1,2)=P1(P2(1,2))=P1(2,4)=(6,-2),則P2017(1,-1)=( 。
A.(0,21008B.(21008,-21008C.(21009,-21009D.(0,21009

分析 根據(jù)已知條件找出變化規(guī)律,推出關(guān)系式,然后求解P2017(1,-1)的結(jié)果.

解答 解:由已知條件可得:P1(1,-1)=(0,2),
P2(1,-1)=P1(P1(1,-1))=P1(0,2)=(2,-2),
P3(1,2)=P1(P2(1,-1))=P1(2,-2)=(0,4),
P4(1,2)=P1(P3(1,-1))=P1(0,4)=(4,-4),
P5(1,2)=P1(P4(1,-1))=P1(4,-4)=(0,8),
P6(1,2)=P1(P5(1,-1))=P1(0,8)=(8,-8),
P7(1,2)=P1(P6(1,-1))=P1(8,-8)=(0,16),
當(dāng)n為偶數(shù)時,Pn=(${2}^{\frac{n}{2}}$,-${2}^{\frac{n}{2}}$),
當(dāng)n為奇數(shù)時,Pn=($0,{2}^{\frac{n+1}{2}}$),
P2017(1,-1)=(0,${2}^{\frac{2018}{2}}$)=(0,21009)  
故選:D.

點(diǎn)評 本題考查數(shù)列的應(yīng)用,數(shù)列的遞推關(guān)系式的求法,考查分析問題解決問題的能力,注意新定義的應(yīng)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.若cos($\frac{π}{4}$-θ)=m,則cos($\frac{3π}{4}$+θ)=-m(用m表示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知向量$\overrightarrow{a}$=(1,0),$\overrightarrow$=(0,1),若(k$\overrightarrow{a}$+$\overrightarrow$)⊥(3$\overrightarrow{a}$-$\overrightarrow$),則實(shí)數(shù)k=$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.在明朝程大位《算法統(tǒng)宗》中有首依等算鈔歌:“甲乙丙丁戊己庚,七人錢本不均平,甲乙念三七錢鈔,念六一錢戊己庚,惟有丙丁錢無數(shù),要依等第數(shù)分明,請問先生能算者,細(xì)推祥算莫差爭.”題意是:“現(xiàn)有七人,他們手里錢不一樣多,依次差值等額,已知甲乙兩人共237錢,戊己庚三人共261錢,求各人錢數(shù).”根據(jù)上題的已知條件,丁有( 。
A.100錢B.101錢C.102錢D.103錢

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.利用坐標(biāo)軸平移化簡下列曲線的方程,并指出新坐標(biāo)原點(diǎn)在原坐標(biāo)系中的坐標(biāo):
(1)x2+y2-6x+8y=0;
(2)x2+4x-3y-2=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知a,b,c為三條不同的直線,給出如下兩個命題:①若a⊥b,b⊥c,則a∥c;②若a∥b,b⊥c,則a⊥c.試類比以上兩個命題,寫出一個正確的命題:設(shè)α、β、γ為三個不同的平面,若α∥β,β⊥γ,則α⊥γ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.圓C的方程是(x-2)2+y2=25,過點(diǎn)P(3,-1)的圓C最短的弦AB所在的直線的方程是x-y-4=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.若角α的終邊經(jīng)過點(diǎn)(1,2),則sin2α-cos2α=( 。
A.$\frac{3}{5}$B.-$\frac{3}{5}$C.$\frac{3}{4}$D.-$\frac{3}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的短軸長為2,離心率為$\frac{\sqrt{2}}{2}$.
(1)求橢圓C的方程;
(2)若動直線l經(jīng)過點(diǎn)M(-2,0)與橢圓C交于P、Q兩點(diǎn),O為坐標(biāo)原點(diǎn),求△OPQ面積的最大值.

查看答案和解析>>

同步練習(xí)冊答案