1.已知向量$\overrightarrow{a}$=(1,0),$\overrightarrow$=(0,1),若(k$\overrightarrow{a}$+$\overrightarrow$)⊥(3$\overrightarrow{a}$-$\overrightarrow$),則實數(shù)k=$\frac{1}{3}$.

分析 根據(jù)平面向量的坐標(biāo)運(yùn)算與數(shù)量積的定義,列出方程求出k的值.

解答 解:∵向量$\overrightarrow{a}$=(1,0),$\overrightarrow$=(0,1),
∴k$\overrightarrow{a}$+$\overrightarrow$=(k,1),3$\overrightarrow{a}$-$\overrightarrow$=(3,-1),
又(k$\overrightarrow{a}$+$\overrightarrow$)⊥(3$\overrightarrow{a}$-$\overrightarrow$),
∴3k-1=0,
解得k=$\frac{1}{3}$,
故答案為:$\frac{1}{3}$.

點評 本題考查了平面向量的坐標(biāo)運(yùn)算與數(shù)量積的定義與應(yīng)用問題,是基礎(chǔ)題目.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.命題p:數(shù)列{an}的前n項和Sn=an2+bn+c(a≠0);命題q:數(shù)列{an}是等差數(shù)列.則p是q的( 。
A.充分而不必要條件B.必要而不充分條件
C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.化簡$\frac{sin(α-90°)•cos(α+450°)•tan(-α)}{cos(-180°-α)•tan(180°-α)sin(-α-180°)}$的結(jié)果為(  )
A.1B.-1C.tanαD.-tanα

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知α∈(-$\frac{π}{2}$,0),sin(-α-$\frac{2015}{2}$π)=$\frac{\sqrt{5}}{5}$,則sin(-π-α)=(  )
A.$\frac{\sqrt{5}}{5}$B.$\frac{2\sqrt{5}}{5}$C.-$\frac{\sqrt{5}}{5}$D.-$\frac{2\sqrt{5}}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.下列函數(shù)中,在其定義域上既是奇函數(shù)又是增函數(shù)的是( 。
A.y=2xB.y=sinxC.y=x3D.y=ln|x|

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.設(shè)數(shù)列{an}是公差不為零的等差數(shù)列,Sn為其前n項和,若$a_1^2+a_3^2=a_5^2+a_7^2$且S9=9,則a4=(  )
A.2B.1C.0D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.若向量$\overrightarrow{a}$,$\overrightarrow$共線,則一定存在實數(shù)λ,使得$\overrightarrow{a}$=$λ\overrightarrow$.錯(判斷對錯)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.對點(x,y)的一次操作變換記為P1(x,y),定義其變換法則為P1(x,y)=(x+y,x-y),且規(guī)定Pn(x,y)=P1(Pn-1(x+y,x-y))(n為大于1的整數(shù)),如P1(1,2)=(3,-1),P2(1,2)=P1(P1(1,2))=P1(3,-1)=(2,4),P3(1,2)=P1(P2(1,2))=P1(2,4)=(6,-2),則P2017(1,-1)=(  )
A.(0,21008B.(21008,-21008C.(21009,-21009D.(0,21009

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知向量$\overrightarrow{a}$=(cos75°,sin75°),$\overrightarrow$=(cos15°,sin15°),則|$\overrightarrow{a}$-$\overrightarrow$|的值為( 。
A.$\frac{1}{2}$B.1C.2D.3

查看答案和解析>>

同步練習(xí)冊答案