【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為以為極點,軸正半軸為極軸建立極坐標(biāo)系,設(shè)點在曲線上,點在曲線上,且為正三角形.
(1)求點,的極坐標(biāo);
(2)若點為曲線上的動點,為線段的中點,求的最大值.
【答案】(1),; (2).
【解析】
(1)利用極坐標(biāo)和直角坐標(biāo)的互化公式,即得解;
(2)設(shè)點的直角坐標(biāo)為,則點的直角坐標(biāo)為.將此代入曲線的方程,可得點在以為圓心,為半徑的圓上,所以的最大值為,即得解.
(1)因為點在曲線上,為正三角形,
所以點在曲線上.
又因為點在曲線上,
所以點的極坐標(biāo)是,
從而,點的極坐標(biāo)是.
(2)由(1)可知,點的直角坐標(biāo)為,B的直角坐標(biāo)為
設(shè)點的直角坐標(biāo)為,則點的直角坐標(biāo)為.
將此代入曲線的方程,有
即點在以為圓心,為半徑的圓上.
,
所以的最大值為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某電視傳媒公司為了了解某地區(qū)電視觀眾對某類體育節(jié)目的收視情況,隨機(jī)抽取了名觀眾進(jìn)行調(diào)查,如圖是根據(jù)調(diào)查結(jié)果繪制的觀眾日均收看該體育節(jié)目時間的頻率分布直方圖,將日均收看該體育節(jié)目時間不低于分鐘的觀眾稱為體育迷.
(1)若日均收看該體育節(jié)目時間在內(nèi)的觀眾中恰有兩名女性,現(xiàn)日均收看時間在內(nèi)的觀眾中抽取兩名進(jìn)行調(diào)查,求這兩名觀眾恰好一男一女的概率;
(2)若抽取人中有女性人,其中女體育迷有人,完成答題卡中的列聯(lián)表并判斷能否在犯錯誤概率不超過的前提下認(rèn)為體育迷與性別有關(guān)系?
非體育迷 | 體育迷 | 合計 | |
男 | |||
女 | |||
合計 |
附表及公式:,
k0 | 2.706 | 3.841 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】近幾年,我國在電動汽車領(lǐng)域有了長足的發(fā)展,電動汽車的核心技術(shù)是動力總成,而動力總成的核心技術(shù)是電機(jī)和控制器,我國永磁電機(jī)的技術(shù)已處于國際領(lǐng)先水平.某公司計劃今年年初用196萬元引進(jìn)一條永磁電機(jī)生產(chǎn)線,第一年需要安裝、人工等費用24萬元,從第二年起,包括人工、維修等費用每年所需費用比上一年增加8萬元,該生產(chǎn)線每年年產(chǎn)值保持在100萬元.
(1)引進(jìn)該生產(chǎn)線幾年后總盈利最大,最大是多少萬元?
(2)引進(jìn)該生產(chǎn)線幾年后平均盈利最多,最多是多少萬元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,已知曲線的參數(shù)方程為(為參數(shù))。曲線的參數(shù)方程為(為參數(shù)),在以坐標(biāo)原點為極點,軸正半軸為極軸建立極坐標(biāo)系.
(1)求曲線,的極坐標(biāo)方程;
(2)在極坐標(biāo)系中,射線與曲線交于點,射線與曲線交于點,求的面積(其中為坐標(biāo)原點).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,的參數(shù)方程為(t為參數(shù)).以坐標(biāo)原點O為極點,x軸的正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為.
(1)求的普通方程和曲線C的直角坐標(biāo)方程;
(2)求曲線C上的點到距離的最大值及該點坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)命題:函數(shù)的定義域為;命題:不等式對一切正實數(shù)均成立.
(1)如果是真命題,求實數(shù)的取值范圍;
(2)如果命題“”為真命題,且“”為假命題,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形,為的中點,將沿直線翻折成,連接,為的中點,則在翻折過程中,下列說法中所有正確的是( )
A.存在某個位置,使得B.翻折過程中,的長是定值
C.若,則;D.若,當(dāng)三棱錐的體積最大時,三棱錐的外接球的表面積是.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com