分析 連接AF2,BF2,可得四邊形AF1BF2為平行四邊形,即有|BF1|=|AF2|,由雙曲線的定義可得|AF1|-|AF2|=2a,結(jié)合已知條件和|AF2|≥c-a,運(yùn)用離心率公式,解不等式即可得到所求范圍.
解答 解:連接AF2,BF2,可得四邊形AF1BF2為平行四邊形,
即有|BF1|=|AF2|,
由雙曲線的定義可得|AF1|-|AF2|=2a,
|$\overrightarrow{A{F}_{1}}$|=$\frac{c}{a}$|$\overrightarrow{B{F}_{1}}$|,即為|AF1|=$\frac{c}{a}$|AF2|,
可得2a=($\frac{c}{a}$-1)|AF2|,
由雙曲線的性質(zhì)可得|AF2|≥c-a,
即有2a≥($\frac{c}{a}$-1)(c-a),
由e=$\frac{c}{a}$可得e2-2e-1≤0,
解得1-$\sqrt{2}$≤e≤1+$\sqrt{2}$,
但e>1,即有1<e≤1+$\sqrt{2}$,
則離心率的取值范圍是(1,1+$\sqrt{2}$].
故答案為:(1,1+$\sqrt{2}$].
點(diǎn)評 本題考查雙曲線的離心率的范圍,注意運(yùn)用雙曲線的定義和性質(zhì),同時(shí)考查化簡整理的運(yùn)算能力,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{2}$ | B. | $\sqrt{3}$ | C. | 1+$\sqrt{2}$ | D. | 1+$\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 72 | B. | 108 | C. | 180 | D. | 216 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2$\sqrt{2}$ | B. | 4 | C. | 3$\sqrt{2}$ | D. | 6 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com