6.已知F1(-c,0)為雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左焦點(diǎn),直線y=kx與雙曲線交于A,B兩點(diǎn),若|$\overrightarrow{A{F}_{1}}$|=$\frac{c}{a}$|$\overrightarrow{B{F}_{1}}$|,則雙曲線的離心率的取值范圍是(1,1+$\sqrt{2}$].

分析 連接AF2,BF2,可得四邊形AF1BF2為平行四邊形,即有|BF1|=|AF2|,由雙曲線的定義可得|AF1|-|AF2|=2a,結(jié)合已知條件和|AF2|≥c-a,運(yùn)用離心率公式,解不等式即可得到所求范圍.

解答 解:連接AF2,BF2,可得四邊形AF1BF2為平行四邊形,
即有|BF1|=|AF2|,
由雙曲線的定義可得|AF1|-|AF2|=2a,
|$\overrightarrow{A{F}_{1}}$|=$\frac{c}{a}$|$\overrightarrow{B{F}_{1}}$|,即為|AF1|=$\frac{c}{a}$|AF2|,
可得2a=($\frac{c}{a}$-1)|AF2|,
由雙曲線的性質(zhì)可得|AF2|≥c-a,
即有2a≥($\frac{c}{a}$-1)(c-a),
由e=$\frac{c}{a}$可得e2-2e-1≤0,
解得1-$\sqrt{2}$≤e≤1+$\sqrt{2}$,
但e>1,即有1<e≤1+$\sqrt{2}$,
則離心率的取值范圍是(1,1+$\sqrt{2}$].
故答案為:(1,1+$\sqrt{2}$].

點(diǎn)評 本題考查雙曲線的離心率的范圍,注意運(yùn)用雙曲線的定義和性質(zhì),同時(shí)考查化簡整理的運(yùn)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.雙曲線$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左、右焦點(diǎn)分別是F1,F(xiàn)2,過F1作傾斜角為45°的直線交雙曲線右支于M點(diǎn),若MF2垂直x軸,則雙曲線的離心率為(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.1+$\sqrt{2}$D.1+$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.一座底是長方形、屋頂是正三棱柱的倉庫,尺寸如圖標(biāo)注(單位:米),求這倉庫的容積(墻厚略去不計(jì)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.某中學(xué)學(xué)生社團(tuán)活動(dòng)迅猛發(fā)展,高一新生中的五名同學(xué)打算參加“清凈了文學(xué)社”、“科技社”、“十年國學(xué)社”、“圍棋苑”四個(gè)社團(tuán).若每個(gè)社團(tuán)至少有一名同學(xué)參加,每名同學(xué)至少參加一個(gè)社團(tuán)且只能參加一個(gè)社團(tuán),且同學(xué)甲不參加“圍棋苑”,則不同的參加方法的種數(shù)為(  )
A.72B.108C.180D.216

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知2件次品和a件正品放在一起,現(xiàn)需要通過檢測將其區(qū)分,每次隨機(jī)檢測一件產(chǎn)品,檢測后不放回,直到檢測出2件次品或者檢測出a件正品時(shí)檢測結(jié)束,已知前兩次檢測都沒有檢測出次品的概率為$\frac{3}{10}$.
(1)求實(shí)數(shù)a的值;
(2)若每檢測一件產(chǎn)品需要費(fèi)用100元,設(shè)x表示直到檢測出2件次品或者檢測出3件正品時(shí)所需要的檢測費(fèi)用(單位:元),求x的分布列和均值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.如圖所示,在棱長為2的正方體ABCD-A′B′C′D′中,求:
(1)二面角B-A′D′-D的平面角的正切值;
(2)三棱錐A′-BB′D′的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.在所有的三位數(shù)中,百位數(shù)字,十位數(shù)字和個(gè)位數(shù)字依次增大的有84個(gè).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.在平面上,過點(diǎn)P作直線l的垂線所得的垂足稱為點(diǎn)P在直線l上的投影,由區(qū)域$\left\{\begin{array}{l}{x-2≤0}\\{x+y≥0}\\{x-3y+4≥0}\end{array}\right.$中的點(diǎn)在直線x+y-2=0上的投影構(gòu)成的線段記為AB,則|AB|=( 。
A.2$\sqrt{2}$B.4C.3$\sqrt{2}$D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.有一旗桿高12米,它的頂端掛一條長13米的繩子,拉緊繩子,并把它的下端先后放在地面上的兩點(diǎn)(和旗桿底端不在同一條直線上),已知兩點(diǎn)與旗桿底端的距離都是5米.求證:該旗桿與地面垂直.

查看答案和解析>>

同步練習(xí)冊答案