9.若集合A={-2,-1,0,1,2},B={x||x|≤1},則A∩B=( 。
A.{-1,0,1}B.{0,1}C.{x|-1≤x≤1}D.{x|0≤x≤1}

分析 根據(jù)集合交集的概念求解即可.

解答 解:∵B={x||x|≤1}={x|-1≤x≤1},
∵A={-2,-1,0,1,2},
∴A∩B={-1,0,1},
故選A.

點評 本題主要考查集合的交集的運算.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知圓C:(x-3)2+(y-5)2=5,過圓心C的直線l交圓C于A,B兩點,交y軸于點P.若A恰為PB的中點,則直線l的方程為2x-y-1=0或2x+y-11=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.函數(shù)y=3tan2x的對稱中心(k∈Z)為( 。
A.($\frac{k}{2}π$,0)B.($\frac{k}{4}π$,0)C.($\frac{kπ}{2}$+$\frac{π}{4}$,0)D.(kπ,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知$\overrightarrow{a}$=(3,-1),$\overrightarrow$=(1,k),$\overrightarrow{a}$⊥$\overrightarrow$;
(1)求k的取值;
(2)求$\overrightarrow{a}$+$\overrightarrow$與$\overrightarrow{a}$-$\overrightarrow$的夾角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.等差數(shù)列{an}滿足:a1=1,a2+a6=14;正項等比數(shù)列{bn}滿足:b1=2,b3=8.
(1)求數(shù)列{an},{bn}的通項公式an,bn;
(2)求數(shù)列{(an+1)•bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.不論m為何實數(shù),直線mx-y+3+m=0恒過定點(-1,3).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)=$\sqrt{3}$sinx+cosx.
(1)求f(x)的最大值;
(2)設(shè)g(x)=f(x)cosx,x∈[0,$\frac{π}{2}$],求g(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知向量$\vec a$=(sinx,cosx),$\vec b$=(1,$\sqrt{3}$),若$\overrightarrow a∥\overrightarrow b$且$\overrightarrow a,\overrightarrow b$方向相同,則$\overrightarrow a$=($\frac{1}{2}$,$\frac{\sqrt{3}}{2}$);若函數(shù)f(x)=$\overrightarrow a•\overrightarrow b$的圖象關(guān)于直線x=ϕ(0<ϕ<π)對稱,則ϕ=$\frac{π}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.函數(shù)f(x)=x-2lnx在區(qū)間[1,e]上的最小值和最大值分別是( 。
A.1和e-2B.2-2ln2和e-2C.-1和e-2D.2-2ln2和1

查看答案和解析>>

同步練習(xí)冊答案