19.函數(shù)f(x)=x-2lnx在區(qū)間[1,e]上的最小值和最大值分別是( 。
A.1和e-2B.2-2ln2和e-2C.-1和e-2D.2-2ln2和1

分析 求出f(x)的導(dǎo)數(shù),解關(guān)于導(dǎo)函數(shù)的不等式,求出函數(shù)的單調(diào)區(qū)間,從而求出函數(shù)的最大值和最小值即可.

解答 解:f(x)=x-2lnx,f′(x)=1-$\frac{2}{x}$=$\frac{x-2}{x}$,
令f′(x)>0,解得:x>2,令f′(x)<0,解得:x<2,
∴f(x)在[1,2)遞減,在(2,e]遞增,
∴f(x)min=f(2)=2-2ln2,而f(1)=1>f(e)=e-2,
故f(x)在區(qū)間[1,e]上的最小值和最大值分別是:2-2ln2,1,
故選:D.

點(diǎn)評(píng) 本題考查了函數(shù)的單調(diào)性、最值問(wèn)題,考查導(dǎo)數(shù)的應(yīng)用,是一道中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.若集合A={-2,-1,0,1,2},B={x||x|≤1},則A∩B=( 。
A.{-1,0,1}B.{0,1}C.{x|-1≤x≤1}D.{x|0≤x≤1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.已知數(shù)列{an}的通項(xiàng)公式為an=sin$\frac{nπ}{3}$,則a3=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.設(shè)函數(shù)f(x)=|2x-3|+|x-5|.
(1)求不等式f(x)≥4的解集;
(2)若f(x)<a的解集不是空集,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知菱形ABCD中,AB=4,∠BAD=60°,將菱形ABCD沿對(duì)角線BD翻折,使點(diǎn)C翻折到點(diǎn)C1的位置,點(diǎn)E,F(xiàn),M分別是AB,DC1,BC1的中點(diǎn).
(I)求證:AC1⊥BD;
(Ⅱ)當(dāng)EM=$\sqrt{6}$時(shí),求三棱錐B-EFM的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.己知△ABC內(nèi)一點(diǎn)P滿足$\overrightarrow{AP}=\frac{1}{2}\overrightarrow{AB}$+$\frac{1}{8}$$\overrightarrow{AC}$,過(guò)點(diǎn)P的直線分別交邊AB、AC于M、N兩點(diǎn),若$\overrightarrow{AM}=λ\overrightarrow{AB}$,$\overrightarrow{AN}=μ\overrightarrow{AC}$,則λ+μ的最小值為$\frac{9}{8}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,已知A=B+30°,$\sqrt{3}$b=$\sqrt{2}$c
(1)求角B;
(2)若BC=$\sqrt{6}$+$\sqrt{2}$,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.解方程:sin2x=sin2x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.點(diǎn)M(x,y)滿足不等組$\left\{\begin{array}{l}{3x-y-6≤0}\\{x-y+2≥0}\\{x≥0,y≥0}\end{array}\right.$,點(diǎn)P($\frac{1}{a}$,$\frac{1}$)(a>0,b>0),若$\overrightarrow{OP}$•$\overrightarrow{OM}$的最大值為6,則3a+b的最小值為( 。
A.4$\sqrt{2}$B.9C.3+2$\sqrt{2}$D.3$\sqrt{2}$

查看答案和解析>>

同步練習(xí)冊(cè)答案