Loading [MathJax]/jax/output/CommonHTML/jax.js
精英家教網 > 高中數學 > 題目詳情
11.在△ABC中,角A,B,C所對的邊分別為a,b,c,已知A=B+30°,3b=2c
(1)求角B;
(2)若BC=6+2,求△ABC的面積.

分析 (1)確定C=150°-2B,利用3sinB=2sinC,代入化簡,即可求角B;
(2)若BC=6+2,求出c,再利用三角形的面積公式求出△ABC的面積.

解答 解:(1)在△ABC中,∵A=B+30°,
∴C=150°-2B,
3b=2c,
3sinB=2sinC,
3sinB=2sin(150°-2B),
3sinB=232cos2B+212sin2B,
∴B=45°;
(2)∵a=6+2,
∴b2=(6+22+c2-2(6+2)c×22
3b=2c,
∴代入化簡可得c2-(63+6)c+24+123=0,
c=23或6+43,
∴△ABC的面積S=12acsinB=3+3或9+53

點評 本題考查正弦、余弦定理的運用,考查三角形面積的計算,考查學生分析解決問題的能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

1.已知函數f(x)=3sinx+cosx.
(1)求f(x)的最大值;
(2)設g(x)=f(x)cosx,x∈[0,π2],求g(x)的值域.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

2.已知數列{an}的前n項和Sn=n2,則a2016=4031.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

19.函數f(x)=x-2lnx在區(qū)間[1,e]上的最小值和最大值分別是(  )
A.1和e-2B.2-2ln2和e-2C.-1和e-2D.2-2ln2和1

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

6.已知實數x,y滿足{x+y202xy40x2y+10,則目標函數z=2x+y的最大值是( �。�
A.6B.7C.8D.9

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

16.若(3x+1x2-2)4的展開式中所有項的系數的和為16,則展開式中的常數項為-200(用數字作答)

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

3.定義當a<0時,[a]x={axx0axx0,現有四個命題:
①若a<0,b>0,c≥0,則[a]cbc=[ab]c
②若a<0,b>0,c<0,則[a]cbc=[ab]c;
③若a>0,b>0,c≥0,則acbc=[-ab]c
④若a>0,b>0,c<0,則acbc=[-ab]c
其中的真命題有①③(寫出所有真命題的編號).

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

20.若拋物線y=12x2上點P處的切線的傾斜角是45°,則P點的坐標為(1,12).

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

1.二項式(3x-1x5展開式中各項系數和為32.

查看答案和解析>>

同步練習冊答案