【題目】如果函數(shù)的定義域?yàn)?/span>,且存在實(shí)常數(shù),使得對(duì)定義域內(nèi)的任意,都有恒成立,那么稱(chēng)此函數(shù)具有“性質(zhì)”.

1)判斷函數(shù)是否具有“性質(zhì)”,若具有“性質(zhì)”,求出所有的值,若不具有“性質(zhì)”,請(qǐng)說(shuō)明理由;

2)已知具有“性質(zhì)”,且當(dāng)時(shí),,求的最大值;

3)已知函數(shù)既具有“性質(zhì)”,又具有“性質(zhì)”且當(dāng)時(shí),,若函數(shù)圖象與直線(xiàn)的公共點(diǎn)有個(gè),求的取值范圍.

【答案】1,理由見(jiàn)解析;(2;(3.

【解析】

1)由恒成立,得出的值;

2)根據(jù)性質(zhì)可知函數(shù)為偶函數(shù),求出函數(shù)上的解析式,根據(jù)二次函數(shù)的性質(zhì)得出最大值;

3)根據(jù)對(duì)稱(chēng)軸和周期作出函數(shù)的圖象,根據(jù)交點(diǎn)個(gè)數(shù)列出不等式組得出的范圍.

1)假設(shè)函數(shù)具有“性質(zhì)”,

恒成立,即恒成立,

化簡(jiǎn)得:恒成立,,解得.

因此,函數(shù)具有“性質(zhì)”,且

2函數(shù)具有“性質(zhì)”,,所以,函數(shù)為偶函數(shù).

當(dāng)時(shí),則,.

當(dāng)時(shí),

當(dāng)時(shí),.

綜上所述,;

3))函數(shù)既具有“性質(zhì)”,又具有“性質(zhì)”,

,所以,函數(shù)的圖象關(guān)于直線(xiàn)對(duì)稱(chēng),

且函數(shù)的一個(gè)周期為

作出函數(shù)的圖象如下圖所示:

由圖象可知,函數(shù)的最小正周期為

當(dāng)時(shí),函數(shù)與直線(xiàn)有無(wú)數(shù)多個(gè)交點(diǎn),不符合題意;

當(dāng)時(shí),若函數(shù)圖象與直線(xiàn)的公共點(diǎn)有個(gè),

所以,解得;

當(dāng)時(shí),同理可得.

因此,實(shí)數(shù)的取值范圍是.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列{an}的通項(xiàng)公式為 an=nk1)(nk2),其中k1,k2Z

1)試寫(xiě)出一組k1,k2Z的值,使得數(shù)列{an}中的各項(xiàng)均為正數(shù);

2)若k1=1、k2N*,數(shù)列{bn}滿(mǎn)足bn=,且對(duì)任意mN*m≠3),均有b3bm,寫(xiě)出所有滿(mǎn)足條件的k2的值;

3)若0k1k2,數(shù)列{cn}滿(mǎn)足cn=an+|an|,其前n項(xiàng)和為Sn,且使ci=cj≠0i,jN*,ij)的ij有且僅有4組,S1、S2、Sn中至少3個(gè)連續(xù)項(xiàng)的值相等,其他項(xiàng)的值均不相等,求k1,k2的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知直三棱柱中,,,,,點(diǎn)DE分別是的中點(diǎn),求:

(1)該直三棱柱的側(cè)面積;

(2)異面直線(xiàn)所成的角的大小(用反三角函數(shù)值表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)由方程到確定,對(duì)于函數(shù)給出下列命題:

①對(duì)任意,都有恒成立:

,使得同時(shí)成立;

③對(duì)于任意恒成立;

④對(duì)任意,,

都有恒成立.其中正確的命題共有( )

A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,A、B是海岸線(xiàn)OM、ON上兩個(gè)碼頭,海中小島有碼頭Q到海岸線(xiàn)OM、ON的距離分別為、,測(cè)得,以點(diǎn)O為坐標(biāo)原點(diǎn),射線(xiàn)OMx軸的正半軸,建立如圖所示的直角坐標(biāo)系,一艘游輪以小時(shí)的平均速度在水上旅游線(xiàn)AB航行(將航線(xiàn)AB看作直線(xiàn),碼頭Q在第一象限,航線(xiàn)BB經(jīng)過(guò)點(diǎn)Q.

1)問(wèn)游輪自碼頭A沿方向開(kāi)往碼頭B共需多少分鐘?

2)海中有一處景點(diǎn)P(設(shè)點(diǎn)P平面內(nèi),,且),游輪無(wú)法靠近,求游輪在水上旅游線(xiàn)AB航行時(shí)離景點(diǎn)P最近的點(diǎn)C的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,曲線(xiàn)C上的點(diǎn)到點(diǎn)的距離與它到直線(xiàn)的距離之比為,圓O的方程為,曲線(xiàn)Cx軸的正半軸的交點(diǎn)為A,過(guò)原點(diǎn)O且異于坐標(biāo)軸的直線(xiàn)與曲線(xiàn)C交于B,C兩點(diǎn),直線(xiàn)AB與圓O的另一交點(diǎn)為P,直線(xiàn)PD與圓O的另一交點(diǎn)為Q,其中,設(shè)直線(xiàn)AB,AC的斜率分別為;

1)求曲線(xiàn)C的方程,并證明到點(diǎn)M的距離

2)求的值;

3)記直線(xiàn)PQ,BC的斜率分別為、,是否存在常數(shù),使得?若存在,求的值,若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

1)作出函數(shù)的圖像;

2)根據(jù)(1)所得圖像,填寫(xiě)下面的表格:

性質(zhì)

定義域

值域

單調(diào)性

奇偶性

零點(diǎn)

3)關(guān)于的方程恰有6個(gè)不同的實(shí)數(shù)解,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】各項(xiàng)均為正數(shù)的數(shù)列的前項(xiàng)和為,且對(duì)任意正整數(shù),都有

1)求數(shù)列的通項(xiàng)公式;

2)如果等比數(shù)列共有2016項(xiàng),其首項(xiàng)與公比均為2,在數(shù)列的每相鄰兩項(xiàng)之間插入個(gè)后,得到一個(gè)新的數(shù)列.求數(shù)列中所有項(xiàng)的和;

3)是否存在實(shí)數(shù),使得存在,使不等式成立,若存在,求實(shí)數(shù)的范圍,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),

(Ⅰ)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;

(Ⅱ)若曲線(xiàn)在點(diǎn)處的切線(xiàn)與曲線(xiàn)切于點(diǎn),求的值;

(Ⅲ)若恒成立,求的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案